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Mean Shift clustering, as a generalization of the well-known k-means clustering, computes arbitrarily
shaped clusters as defined as the basins of attraction to the local modes created by the density
gradient ascent paths. Despite its potential for improved clustering accuracy, the Mean Shift approach
is a computationally expensive method for unsupervised learning. We introduce two contributions
aiming to provide approximate Mean Shift clustering, based on scalable procedures to compute the
density gradient ascent and cluster labeling, with a linear time complexity, as opposed to the quadratic
time complexity for the exact clustering. Both propositions are based on Locality Sensitive Hashing
Gradient ascent (LSH) to approximate nearest neighbors. When implemented on a serial system, these approximate
Nearest neighbors methods can be used for moderate sized datasets. To facilitate the analysis of Big Data, a distributed
Spark implementation, written for the Spark/Scala ecosystem is proposed. An added benefit is that our
MapReduce proposed approximations of the density gradient ascent, when used as a pre-processing step in other
clustering methods, can also improve the clustering accuracy of the latter. We present experimental
results illustrating the effect of tuning parameters on cluster labeling accuracy and execution times,
as well as the potential to solve concrete problems in Big Clustering.
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1. Introduction

The goal of clustering or unsupervised learning is to assign
cluster membership to unlabeled candidate points where the
number and location of these clusters are unknown. Due to the
exponential increase of the size of datasets collected to tackle
increasingly complex scientific challenges, scalable versions of
unsupervised learning and other machine learning methods have
become critical. The complexity of the machine learning implies
that improvements in distributed hardware on their own are
incapable to providing scalable machine learning. In order to
optimally exploit the hardware, their mathematical foundations
must also be re-formulated with scalability as a priority.

Current Mean Shift clustering [6,13,14] algorithms contain
computational bottlenecks with both kernel and nearest neighbor
approaches: due to the exact evaluation of the kernel function,
and the exact nearest neighbor searches respectively. We pro-
pose a new algorithm which resolves the computational inef-
ficiencies of the nearest neighbor Mean Shift by using Locality
Sensitive Hashing (LSH) [9,17,25] for approximate nearest neigh-
bor searches to replace the exact nearest neighbor calculations.
Compared to kernel approaches of Mean Shift clustering, which
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are O(n?) where n is the size of the dataset, our nearest neighbors
approach enables a scalable O(n) implementation of the gradient
ascent and cluster labeling. In addition to this scalability, nearest
neighbors Mean Shift is a sparse method, and so it can be applied
to the high dimensional datasets, unlike kernel Mean Shift which
is limited to a maximum of 5 or 6 dimensions in practice.

Furthermore, existing programming paradigms for dealing
with parallelism, such as MapReduce [10] and Message Passing
Interface (MPI) [20], have been demonstrated to be the best
practical choices for implementing these clustering algorithms.
Most parallel and distributed clustering algorithms follow the
general framework depicted in Fig. 1 [2,18,23,30].

1. Partition. Distribution and partitioning of data takes place
over machines.

2. Local Clustering. The clustering algorithm is applied on
each machines’ data independently.

3. Global Clustering. Previous clustering results are aggre-
gated into a global clustering.

4. Refinement of Local Clusters. Eventually global clustering
results can be used to refine the local clusters.

MapReduce allows an unexperienced programmer to develop
parallel programs and create a program capable of using com-
puters in a cloud. Indeed the MapReduce paradigm has become
popular since data are stored on a distributed file system, which
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Fig. 1. The general framework of most parallel and distributed clustering algorithms [2].

offers data replication, as well as for its ability to execute com-
putations locally on each data node. Thus, we implement this
approximate nearest neighbor Mean shift clustering algorithm on
a distributed Apache Spark/Scala framework [29], which allows us
to carry out clustering on Big datasets. Users specify the compu-
tation in terms of a map and a reduce function, and the underlying
runtime system automatically parallelizes the computation across
large-scale clusters of machines, handles machine failures, and
schedules inter-machine communication to make efficient use of
the network and disks.

The organization of the paper is as follows. We review related
works in Section 2. In Section 3 we briefly introduce the problem,
prior to elaborating our algorithmic contributions for the gradient
ascent and cluster labeling in Section 4. Section 5 is related to
the experiments conducted on the Grid’5000 testbed where we
examine the role of the key tuning parameters for both acceler-
ating the execution time and controlling the clustering quality.
Concluding remarks are made in Section 6.

2. Related works

For comprehensive reviews of clustering, see for example the
monographs in [1,5]. The principal scalable clustering algorithm
is the well-known k-means [3]. This algorithm has the advantage
of having a single parameter k which stands for the number of de-
sired clusters, which needs to be specified a priori. The algorithm
works by moving k prototypes towards the centroids formed by
their closest data points. This process is repeated iteratively until
the intra-class variance (the sum of squared distances from each
data point within a cluster to its corresponding prototype) is
minimized. DBScan [16] is a well-known density based algorithm.
It takes two parameters, ¢ which defines the radius of the hy-
persphere and minPts which is the minimum number of points
above which a corresponding hypersphere is considered to be
sufficiently dense. Each time the density threshold is reached, the
data points in the same hypersphere belong to the same cluster,
and the process is extended to include more data points until
the data density falls under the threshold determined by & and
minPts. The remaining data points are considered to be noise.
One notable advantage of this algorithm is its ability to automat-
ically detect the number of clusters with arbitrary shape, but it
remains difficult to tune it correctly. Like DBScan, Mean Shift is a
density based algorithm and can detect automatically the num-
ber of clusters with arbitrary shape. Most studies on the Mean
Shift clustering have focused on the kernel versions [24,27,28].
The latter authors compared Gaussian, Cauchy and generalized

Epanechnikov kernels to study the behavior of tuning parameters
of kernel Mean Shift clustering. Fewer studies have been carried
out on nearest neighbors Mean Shift, with recent contributions
on their theoretical (such as convergence) and practical issues
from [4,11]. These authors did not fully resolve the scalability
issues, and so were only able to demonstrate their findings with
moderate values of the number of nearest neighbors. In this
paper, we introduce fully scalable algorithms for the two most
computationally intensive steps of density gradient ascent and
cluster labeling, due to an improved LSH algorithm and a novel
labeling algorithm.

3. Mean shift clustering

The Mean Shift algorithm and its variants consist in two major
steps as described in Algorithm 1. The first important step (the
density gradient ascent) is generally the most computationally
intensive. This gradient ascent can be computed in different ways,
such as with kernel functions or as we propose in this paper,
nearest neighbors. The second step is the cluster labeling phase
where we use the result from the first step to assign cluster labels
to the original data points.

Algorithm 1 Mean Shift

Input: Candidate points {xq, ..., Xn}
Output: Cluster labels {C(x1), ..., ¢(xy)}
Step 1: Density gradient ascent;

Step 2: Cluster labeling;

3.1. Density gradient ascent

The Mean Shift method for a d-dimensional point x, gener-
ates a sequence of points {xg, X1, ...} which follows the gradient
density ascent paths [11] using the recurrence relation

1
X1 =% Z Xi

Xjek-nn(x;)

(1)

where Xy, ..., X, is a random sample drawn from a common
density f and the k nearest neighbors of x are k-nn(x) = {X; :
lx—X;ll < 8y (x)} with §¢)(x) is the kth nearest neighbor distance,
and ¥y = x. Equation (1) gives the Mean Shift method its name
since the current iterate x; is shifted to the sample mean of its
k nearest neighbors for the next iterate X;.;. The gradient ascent
paths towards the local modes produced by Eq. (1) form the basis
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of Algorithm 2, our nearest neighbor Mean Shift gradient ascent
(NNGA).

The inputs to the NNGA are the data sample Xy, ..., X, and
the candidate points X1, ..., X, which we wish to cluster (these
can be the same as X, ..., X,, but this is not required); and
the tuning parameters: the number of nearest neighbors k, the
tolerance under which subsequent iterations in the Mean Shift
update are considered to be convergent ¢, the maximum number
of iterations jmax.

Algorithm 2 NNGA — Nearest Neighbor Gradient Ascent with
exact k-nn
Input: {X;, ..., X,}, {x1,...
Output: {x7,..., X}
1: Compute similarity matrix of Euclidean pairwise distances
between {X1, ..., X,} and {xq, ..., ®;}, and sort each row;

2: for £ :=1to mdo

X}, K, €1, jmax

3: ] = 0; X0 0 = Xy,
[* Search for k-nn based on similarity matrix */
4: X1 := mean of k-nn(xy);
5: while |[x¢ 1, X jl| > &1 OF j < jmax dO
6: j=j+1
7: X¢ j+1 1= mean of k-nn(x ;);
8: X =Xy

The classical version of the NNGA introduced in Algorithm 2
requires, for each candidate point that we compute, the distance
to all other data points, from which the mean of the k nearest
neighbors is set to be the current prototype. The algorithm as-
sociates this prototype with the original candidate points. We
repeat this step until the prototype moves less than a threshold
€1 or whenever the algorithm has reached jn.x iterations.

The complexity for the exact nearest neighbors search of a
single point is nlog(n). Applied to every data point multiple
times, this complexity increases to n’jma. log(n), preventing its
application on Big datasets.

4. Scalable algorithms for mean shift

4.1. Approximate nearest neighbors search for density gradient as-
cent

One promising algorithmic complexity reduction approach re-
lies on computing approximate nearest neighbors rather than
exact neighbors. Among the techniques that can be used, Locality
Sensitive Hashing (LSH), introduced in [9,17], is a probabilistic
method based on a random scalar projection of multivariate data
point x defined below:

L(x;v) = (ZTx+ U)/v

where Z ~ N(0,I;) is a standard d-variate normal random
variable and U ~ Unif(0, v) is a uniform random variable on
[0, v), v > 0. The LSH is parametrized by the number of buckets
M in the hash table. In our context, we propose to set v = 1, and
without loss of generality L; = L(X;; 1). These scalar projections
are sorted into their order statistics L1y < -+ < Ly, and their
range is divided into M; partition intervals of width w = (L) —
Li1y)/My Wherelj =[Lyy+w(i—-1), [n+wjl.Vie{i=1,..., M}
The hash value of x is the index of the interval in which L(x; 1)
falls

H(x) = j1{L(x; 1) € I;},

where 1{-} is the indicator function. To search for approximate
nearest neighbors, the reservoir of potential nearest neighbors is
set to the bucket which contains the hash value. This reservoir is

enlarged if necessary by concatenating the adjacent buckets. The
approximate k nearest neighbors of x are the k nearest neighbors
only drawn from the reduced reservoir R(x) defined as below:

k-nn(x) = {X; € R(x) : [|x — Xil| < 8(x)},

where J(y(x) is the kth nearest neighbor distance to x. The
approximation error in the nearest neighbors to & induced by
searching in R(x) rather than the full dataset is probabilistically
controlled [25]. Our improvement to the classical LSH is based on
the following observations:

e it takes into account the properties of the local data space

more accurately. Rather than looking exclusively in the
bucket where the prototype lies, we also look in the adjacent
buckets on both sides. The main advantage of this is to take
into account the case where a prototype is at the border of a
bucket and so some of its k nearest neighbors mostly likely
fall into the adjacent buckets. This is especially important
for high values of k. It is computationally more expensive
but the cost can be controlled for a fixed bucket size. The
memory cost is increased by a factor of 3 per partition due
to copying the adjacent layers into the active one.
The LSH method partitions the data space into buckets of
approximately k nearest neighbors, which are delimited by
parallel hyperplanes. In practice, the LSH controls the num-
ber of neighboring buckets to two, except for the edge
buckets which have only one neighbor bucket. This is in
contrast to cell based buckets, where the number of neigh-
bor buckets increases exponentially with the number of
dimensions. Fig. 2 illustrates the LSH buckets of approximate
nearest neighbors on 2D (Aggregation) and 3D (GolfBall)
data examples: the orientation of hyperplanes depends on
the random projections utilized to construct the buckets.

e it adds the possibility of allowing the prototype to change
buckets during its gradient ascent. In this case, we look
for its k, nearest neighbors in order to place the proto-
type within the most representative bucket using a majority
voting process. Thus a prototype can pass through multiple
buckets before converging to its final position, as illustrated
in Fig. 3.

Algorithm 3 describes the NNGA™, an approximate nearest
neighbor search using LSH with the hash function H. The inputs
are the data sample Xj, ..., X;, the candidate points X1, ..., Xn,
and the tuning parameters: the number of nearest neighbors k;
and the number of buckets in the hash table M;. In line 1, the hash
table is created by applying the LSH to the data values X1, ..., X,.
In lines 2-6, for each candidate point x,, the approximate k; near-
est neighbors k-nn(x,) are computed from within the reservoir
R(X[ )

Algorithm 3 NNGA™ - Approximate Nearest Neighbors Gradient
Ascent with LSH and adjacent buckets
Input: {Xq, ..., X,}, {®1,..., X0}, k1, M4
Output: {k-nn(x,), ..., k-nn(x,,)}
[* Create hash table with M; buckets */
1: fori:=1tondo H; := H(X;);
[* Search for approx nn in adjacent buckets */
: for £ := 1tomdo
R(x¢) := {X; : Hi=H(x,),i € {1,...,n}}
while card(R(x;)) < k; do
R(x¢) := R(x,) U neighbor bucket;
k-nn(x,) := k-nn from R(x;) to x;

@ DAy

Fig. 4 illustrates the effect of including adjacent buckets in
NNGA™ versus nearest neighbor gradient ascent without adjacent
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(a) Aggregation with M; = 6 buckets.

(b) GolfBall with M1 = 6 buckets.

Fig. 2. LSH buckets for the Aggregation and GolfBall datasets.
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Fig. 3. Passage of a prototype through different LSH buckets during the gradient ascent; n is the number of data points and M; is the number of buckets.

buckets on the Aggregation dataset. For k; = 20 without adjacent
buckets, in Fig. 4a, then we observe that the data are artificially
forced to follow the hyperplanes which delimit the different
buckets. Fig. 4b shows our algorithmic improvement with adding
one layer of adjacent buckets where the underlying structure of
data is maintained.

Whilst the use of the LSH to reduce the complexity of kernel
Mean Shift clustering was already proposed in [7], these authors
did not quantify the reduction in complexity. The complexity of
our NNGAT is reduced to O((Mil)2 log(Mil)) per bucket with M,
buckets, and so the total complexity is O((Mil)2 log( 7)) for all
buckets. Because of this segmentation of the original data space
into M; sub-spaces, the complexity is inversely proportional to
the number of buckets. The trade-off is that the data points in
each bucket have to be sufficiently representative of the local

properties of the original space. Thus the number of buckets M;
is a crucial tuning parameter. Despite this, there are no optimal
methods for selecting the number of buckets [15]. Consequently,
we will examine empirical choices of the number of buckets in
the sequel.

4.2. Cluster labeling: e-proximity

NNGA™ carries out the gradient ascent on the data points until
they have converged to their prototypes. The question is then
how to assign cluster labels to the data points. A first solution is to
assign the same cluster to all points sharing the same prototype.
As observed in Fig. 4(b), even with a prior good choice of kq, there
are (possibly) hundreds of generated prototypes, so assigning
a label to each point according to its closest prototype is not
effective because it can generate too many clusters. Applying
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Fig. 4. NNGA" without and with adjacent buckets for the Aggregation dataset.

the density gradient ascent NNGA™ leads to a converged dataset
with increased inter-cluster distances and decreased intra-cluster
distances as compared to the original dataset. In order to fur-
ther exploit this property, we propose a new proximity-based
approach where points which are under a threshold ¢ > 0 from
each other are considered to belong to the same cluster.

Algorithm 4 illustrates e-proximity cluster labeling. It consists
in exploring the similarity matrix S which is defined as a map
whose objects IDs are the keys and whose pairs (object IDs,
distances) are the values. We initialize the process by taking the
first object of S and cluster with it every point whose distance is
less than . We then apply this exploration process by iteratively
adding the k, nearest neighbors of these added points until this
process terminates. During the process we remove the explored
points from S to avoid repeated calculations. Once the first cluster
is generated, we take another object from outside this first cluster
from the reduced similarity matrix S and repeat the above cluster
formation, until all objects are assigned to a cluster label.

In order to apply this algorithm, we have to build the similarity
matrix which has a O(n?) time complexity, preventing any Big
Data application. A scalable version consists of applying this
algorithm in each LSH partition, and merging each bucket its right
or left adjacent bucket to maintain the bucket order.

Once this step is completed, we apply a MapPartitions pro-
cedure to check if two clusters of two different buckets share
at least 1 pair of points which are less than ¢ apart, then these
two clusters are considered to form a single cluster. We obtain
a dataset which chains common clusters between partitions: all
chained clusters are assigned with the same label by generating
an undirected graph where each connected subgraph represents
a cluster. The search for connected components in a graph is
a common problem which can be solved in linear time in the
number of vertices.

It is important to bound the number of data points in each
bucket because the scalable version of e-proximity clustering
and the check for cluster merging between two buckets have
quadratic complexity in this size. Empirically we advise to set the
number of buckets M; in order to have around 500 to 2000 data
points in each bucket.

A notable problem still remains with the choice of the main
tuning parameter . We set it to be the average of distance from
each point to their k nearest neighbors. We compute it as an
approximate value in using LSH procedure in order to maintain
the scalability property.

Algorithm 4 ¢-proximity labeling

Input: {x{,...,%x,},S, ¢
Output: {C(x1), ..., C(xm)}
: needToVisit <« Set(S.head)
:cp < 0
: clusters <« Map.empty[Int, Set[Int]]
: clusters += (cip, needToVisit)
: while S has elements do
[* pc is the current point of needToVisit */
6: for each p. in needToVisit do
[* Add all points under ¢ to needToVisit */
7: needToVisitUpdated <« {p €S, dist(p, p.) < ¢}
/* Remove explored point from the similarity matrix */
8: -=Dc
[* Update points to explore on next iterations */

9: needToVisit <— needToVisitUpdated
10: if neetToVisit is empty then
11: Cip += 1
12: needToVisit <« Set(S.head)
/* Create a new entry in the clusters map */
13: clusters += (cip, needToVisit)
14: else
/* Add new points to cluster cyp */
15: clusters(cyp) += needToVisit

5. Numerical experiments

Our experiments are carried out on the Grid’5000 testbed
which is the French national testbed for computer science re-
search. We use a dedicated Spark Linux image optimized for
Grid’5000 where Apache Spark is deployed on top of Spark in
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Table 1
Experimental datasets. n is the dataset size, d is the data dimension, N is the
number of clusters.

Dataset n d N

R15 600 2 15
Aggregation 788 2 7
Sizes5 1000 2 4
EngyTime 4096 2 2
Banana 4811 2 2
S3 5000 2 15
Disk6000 6000 2 2
Unbalance 6500 2 8
DS1 9153 2 14
Hepta 212 3 7
Hyperplane 100000 10 5
CovType10 581012 10 7
ScalabiltyDS 140000 000 10 -

Standalone mode. Apache Spark is a fast general purpose dis-
tributed computing system based on a master-slaves architec-
ture. Only the deployment of the image is automatized. We
manually reserve the nodes and provide the Spark cluster with
our code to execute the different experiments on a 2 x 8 core
Intel Xeon E5-2630v3 CPUs and 128 Gb RAM setup.

A key concept in Spark is the resilient distributed dataset
(RDD) which is a read-only collection of objects partitioned across
a group of machines which can be rebuilt if necessary from
the hierarchy of previous RDD operations. Most of the Map and
Reduce operations will be performed on RDDs even if other pure
Scala Map and Reduce operations are executed inside each Spark
partition. We implement our algorithm in Scala because it is the
Spark’s native language and thus allows for good performance.

We use a range from 2 to high dimensional datasets with
different sizes, as summarized in Table 1 [12,26]. To ensure the
comparability of the results across these different datasets, all
algorithms are carried out on the normalized version of the
datasets: x; = (x; — xMN)/(xM* — xMin) where x; is the ith
component of &, and x™", xM¥* are respectively the ith marginal
minimum and maximum values. We repeat each experiment ten
times for robustness.

5.1. Comparison of NNGA' with k-means and DBScan

In this section, we compare NNGA™ (Algorithm 3) with &-
proximity labeling (Algorithm 4) to k-means [3] and DBScan [16].
Table 2 shows the optimal combinations of tuning parameters
used in the comparison between the gradient ascent (NNGA™)
with e-proximity, k-means [3], DBScan [16] and e-proximity.

Table 2

Table 3

NMI and Rand clustering quality indices for the cluster labeling on the exper-
imental datasets for NNGA* with e-proximity labeling, k-means and DBScan.
The bold entries indicate the best results within each row, and 4 entries are
the standard deviations over 10 trials.

Dataset NNGA™ k-means DBScan
with e-proximity
Aggregation NMI 0.97 +0.02 0.83+0.02 0.98 + 0.00
Rand 0.98 +0.02 0.91+£0.01 0.99 +0.00
Banana NMI 1.00 + 0.00 0.31+0.00 1.00 + 0.00
Rand 1.00 £ 0.00 0.70 £+ 0.00 1.00 £+ 0.00
Disk6000 NMI 0.32+0.00 0.00 £ 0.00 1.00 = 0.00
Rand 0.34+0.00 0.50 £ 0.00 1.00 + 0.00
DS1 NMI 0.03 +0.01 0.75 £ 0.01 0.94 +0.00
Rand 0.80+0.01 0.86 &+ 0.00 0.98 + 0.00
EngyTime NMI 0.85+0.08 0.98 + 0.00 0.75 £+ 0.00
Rand 0.93 £ 0.05 1.00 + 0.00 0.90 £ 0.00
Hepta NMI 0.97 +0.04 0.98 + 0.03 0.83+0.00
Rand 0.98 + 0.04 0.99 + 0.02 0.94 £ 0.00
R15 NMI 0.91+0.02 0.96 +0.02 0.99 + 0.00
Rand 0.98 +0.00 0.99 £+ 0.01 1.00 £+ 0.00
S3 NMI 0.74+0.00 0.78 +0.01 0.42 +0.00
Rand 0.96 + 0.00 0.96 + 0.00 0.52 +0.00
Sizes5 NMI 0.89 + 0.01 0.81+£0.12 0.80 £ 0.00
Rand 0.97 + 0.00 0.88+0.13 0.97 + 0.00
Unbalance NMI 0.98 +0.01 0.94 £+ 0.05 0.99 + 0.00
Rand 1.00 + 0.00 0.97 £0.03 1.00 + 0.00
Hyperplane NMI 0.04 £ 0.00 0.01+0.00 One cluster
Rand 0.31+0.00 0.62 + 0.00 only
CovTypel0 NMI 0.09 +0.01 0.07 4+ 0.006 Dataset is
Rand 0.56 &+ 0.04 0.59 & 0.00 too massive

These optimal combinations are obtained by grid searches over
a range of values of each parameter.

To evaluate the quality of the clustering, we use both the Nor-
malized Mutual Information (NMI) [8] and the Rand index [22], as
displayed in Table 3. The bold values are the highest value within
each row. The value of each measure lies between 0 and 1. A
higher value indicates better clustering results. The conclusions
from both of these indices are similar for all datasets, except
for the large datasets Hyperplan n = 100000 and CovTypel0
n = 581012. NNGA" with e-proximity achieves the highest
clustering accuracies for 7 out of the 12 experimental datasets.
For those datasets where it is not the best performing, it is close
behind, with the only possible exception for Disk6000, whose
nested clusters are difficult for NNGA™ to detect accurately.

Optimal tuning parameter choices for clustering comparisons. k; is the number of nearest neighbors in the gradient ascent, M; is
the number of buckets in the LSH, ¢; is the distance threshold for the e-proximity labeling, bold values are manually settled e,
normal ones correspond to approximate average value of its “e; value” k nearest neighbors distance, for NNGA* with e-proximity;
k is the number of clusters for k-means; ¢ is the radius of the hypersphere and minPts is the minimum of number of data points

for DBScan.

Dataset NNGA* with e-proximity k-means DBScan

Aggregation ki =50,M; =8,¢; =30 k=7 & = 0.05, minPts = 8
Banana ki =40,M; =8,&1 =0.1 k=2 & =0.02, minPts = 3
Disk6000 k; = 100, M, = 8, &1 = 0.02 k=7 & = 0.02, minPts = 4
DS1 ky =50, M; = 8,6, =30 k=14 & = 0.03, minPts = 25
EngyTime ki = 200,M; = 8,&; =50 k=2 & = 0.1, minPts = 100
Hepta ki =20,M; =4, =10 k=7 ¢ = 0.1, minPts = 10
R15 ki =20,M; =8,61 =5 k=15 & = 0.05, minPts = 25
S3 ki =40,M; =8, = 15 k=15 & = 0.05, minPts = 50
Sizes5 ki =20,M; =8,51=5 k=4 ¢ = 0.08, minPts = 8
Unbalance ki =40,M; = 8,5, = 80 k=38 & = 0.05, minPts = 20
Hyperplane ki =50,M; =100,&1 =5 k=5 & = 0.05, minPts = 8
CovType10 k; =50, M; =500, &; = 20 k=5 & = 0.05, minPts = 8
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Table 4

NMI and Rand clustering quality indices and execution times for NNGA™ with e-proximity labeling for the DS1 dataset. k; is the
number of nearest neighbors in the gradient ascent, M, is the number of buckets in the LSH, ¢; is the distance threshold for the
e-proximity labeling. The bold entries indicate the best accuracy results, and + entries are the standard deviations over 10 trials.

DS1 M; =12,&; =30 ky =10 k1 =50 ky = 200
NMI 0.0078 £ 0.0003 0.0315 +0.0016 0.0206 £ 0.0021
Rand 0.7268 + 0.0146 0.8190 + 0.0007 0.8129 4+ 0.0029
Execution time (s) 81.1+2.3 84.2+6.5 76.5+29

k1 =50,e1 =30 M; =8 M; =12 M, =20
NMI 0.0240 £+ 0.0016 0.0315 +0.0016 0.0183 £ 0.0020
Rand 0.8039 + 0.0024 0.8190 + 0.0007 0.7932 4+ 0.0041
Execution time (s) 133.4+4.2 84.2 +6.5 439+ 2.0

k] = 50,M1 =12 e1=5 &1 = 30 &) = 100

NMI
Rand
Execution time (s)

0.1085 £ 0.0017
0.8283 4 0.0001
78.3+£3.6

0.0315 4+ 0.0016
0.8190 =+ 0.0007
84.2+6.5

0.0034 £ 0.0002
0.7078 £ 0.0006
76.5+£2.7

5.2. Effect of tuning parameters on clustering accuracy and execu-
tion time

Table 4 illustrates clustering quality results with NMI, Rand
and time duration exclusively on DS1 dataset. We present three
rows, for three parameters &1, My, and k;, on which for each of
them we fix two parameters and change the third one.

As expected from the algorithm design the only parameter
which influence strongly experiences duration is the number
of buckets M; used for the LSH. The larger M; is the faster
one algorithm run becomes. It is due to quadratic complexity
operations that remain in each buckets as well as for gradient
ascent that for local e-proximity. Increasing the buckets number
will decrease number of elements per bucket and then greatly
decrease needed computation time per bucket. Concerning link
with accuracy scores, they stay relatively stable for Rand and NMI.

We observe that specifics combinations of parameters of &;
and k; perform better than others in Table 4. Higher values of
ky will result fusion of closest clusters into bigger ones when
smaller values will smooth clusters shapes. e-proximity cluster-
ing algorithm will precisely gives results depending of how main
parameter ¢ is settled. Smaller ¢ values will provide much more
cluster because less points tend to be closer from each others with
a small ¢ value. At the opposite bigger &1 values will generate
less clusters with more points. It is decisive on some indices as
the NMI. Too many discovered clusters compared to ground truth
classes number will drastically reduce this index score even if
there is a belonging logic with original classes, fortunately the
Rand index suggest that there is a consistency with the original
labeling.

5.3. NNGA™ as a data-shrinkage method

As shown in Fig. 5, our version of the nearest neighbors gradi-
ent ascent NNGA™ results in shrinking the data points towards
their local modes. DS1 after NNGA' (with k; = 50 nearest
neighbors) presents a more compact version than its original ver-
sion, maintaining the underlying data structures whilst increasing
empty space between clusters; likewise for the Hepta dataset.

Being a data shrinkage method, this implies that we can apply
NNGA* before we apply other clustering algorithms. Fig. 6(a)
shows an application of k-means on Sizes5 dataset with k = 4
clusters without NNGA*. Even if the number of clusters in the
k-means on the left is the correct number, these four clusters do
not match so closely the original clusters (NMI=0.81, Rand=0.88).
Fig. 6(b) shows the k-means cluster labeling results applied on
NNGA* output with k; = 20. We observe that these clusters are
more similar to the original clusters (NMI = 0.89, Rand = 0.95)
than with k-means only.

DBScan cluster labeling collates points more efficiently after
NNGA* is applied than without NNGA™, as shown in Fig. 7.

NNGA™ is an efficient way to attach noisy points to their closest
cluster. Furthermore, NNGA™ facilitates more robust choices for
the DBScan parameters, since it increases the local density which
improves the detection of smaller clusters. The NMI and Rand
increase after the NNGA™ data shrinkage.

5.4. Evaluation of scalability

5.4.1. Density gradient ascent

As the data are distributed over all buckets or Spark partitions,
this allows for efficient computations in the local environment of
a data point. Fig. 8(a) shows that the execution time gradually
decreases as the number of slaves increases for a dataset of fixed
size. In Fig. 8(b), for a fixed number of slaves, if we maintain
the constant number of elements per bucket, the execution time
grows linearly with the size of the dataset. This indicates that
the number of nearest neighbors k; needs to be constrained. The
number of layers p indicates the adjacent buckets in the LSH
which can be searched to find nearest neighbors: p = 0 means
that no adjacent buckets, p = 1 means the immediately adjacent
buckets to the left and right, p = 2 means that second order
adjacent buckets further away etc.

Since we have an O((Mi])2 log(Mi])) complexity per bucket for
NNGA™, a suitable value for the number of buckets M is to keep
the Mll ratio approximately equal to a constant C. Then the time
complexity of NNGA™ reduces to O(nC log(C)). The scalability is
demonstrated by the decrease in execution time with the number
of slaves and a linear increase of execution time with the dataset
size, reaching 140 million data points (the ScalabilityDS dataset)
which is infeasible for the original quadratic algorithm.

5.4.2. LSH buckets and neighbor layers

For a fixed number of neighbor layers, we observe in Fig. 9(a)
that the execution time rapidly decreases and then slows down to
reach a plateau, as the number of buckets increases. The observed
plateau is due to the quadratic complexity of the NNGA™: more
buckets leads to fewer data points within each bucket and so the
execution times can quickly reach the minimal plateau after a suf-
ficiently large number of buckets. We also studied the influence
of the number of neighbors layers p on the execution time. Whilst
NNGA™ has quadratic time complexity in each bucket, if we select
an appropriate number of nearest neighbors kq, then we are able
to control the execution time of NNGA™ to be linear with respect
to the number of neighbors layers p, as illustrated in Fig. 9(b).

5.4.3. e-proximity cluster labeling

Concerning e-proximity cluster labeling, similar remarks as for
the gradient ascent apply here. As Fig. 10 follows same decrease
in the execution time as for the gradient ascent as a function of
the number of slaves and data points we can be confident in the
scalability of our approach.
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Fig. 5. Data shrinkage after nearest neighbor gradient ascent NNGA™ on the DS1 and Hepta datasets.

5.5. Software

In order to facilitate further experiments and reproducible
research, we provide our contributions through an open source
API which will contain NNGA™, the e-proximity cluster label-
ing, the traditional Mean-shift, and k-means implemented in
Spark/Scala and the API documentation at https://github.com/
Clustering4Ever/Clustering4Ever.

Moreover Spark Notebooks of our Mean Shit proposition are
available at https://github.com/Spark-clustering-notebook/Cluste
ring4Ever-Notebooks/tree/master/SparkNotebooks/0.9.4. The first

one exposes simple usage of the algorithm and the second is the
one used to obtain Table 4.

6. Conclusion

In this paper, we have introduced multiple improvements to
the standard nearest neighbors gradient ascent used in Mean Shift
algorithm. The first series of improvements are based on new
usages of Locality Sensitivity Hashing for approximate nearest
neighbors during the nearest neighbors gradient ascent (NNGA™),
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(a) Sizes5 after k-means (k = 4)

(b) Sizesb after k-means (k = 4) with
NNGA™ (number of nearest neighbors
k1 = 20)

Fig. 6. k-means cluster labeling on the Sizes5 dataset without and with NNGA™ data shrinkage.

(a) EngyTime after DBScan with pa-
rameters #minPts=22, #£=0.07

(b) EngyTime after DBScan with pa-
rameters #minPts=22, #=0.07 after
NNGA™ (number of nearest neighbors
ey = 200)

Fig. 7. DBSCan cluster labeling on the Sizes5 dataset without and with NNGA" data shrinkage.

and the cluster labeling (e-proximity). The second one is an effi-
cient and scalable distributed implementation in the Spark/Scala
ecosystem. We demonstrated that these improvements greatly
decrease the execution time whilst maintaining a suitable quality
of clustering. As a side benefit, we also show that using our
NNGAT™ algorithm, as a pre-processing step in other clustering
methods, can improve clustering quality. These improvements
open the opportunity to apply Mean Shift related methods for Big
Data clustering.

Optimal choices of the most important tuning parameters
for our proposed methods for distributed clustering, namely the

number of nearest neighbors for the density gradient ascent, the
number of buckets for the LSH, and the threshold for e-proximity
cluster labeling will be a subject of further investigations. Future
work includes exploring the utility of NNGA™ for clustering al-
gorithms with very high dimensional datasets as this is one of
the most important advantages of nearest neighbor methods over
kernel and other dense methods, different dissimilarity measure
on the e-proximity clustering and different hashing methods [19,
21] other than the simple hashing we have utilized.
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(a) Dataset size n = 500000, #buckets
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Fig. 8. (a) Execution times for NNGA™ with respect to the number of slaves. (b) Execution times for NNGAT with respect to the dataset size n.
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(b) Dataset size n varies, #buckets M; =
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(a) Dataset size n = 50000, #buckets varies, (b) Dataset size n = 50000, #buckets M, =

#layers p = 1. 24, #layers p varies.

Fig. 9. (a) Execution times for NNGA' with respect to the number of buckets (M;). (b) Execution times for NNGA" with respect to the number of adjacent layers

(p)-

e-proximity cluster labeling

(a) Dataset size n = 1000000, #buckets

M, = 1000, #slaves varies, #layers p = 1.
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(b) Dataset size n varies, #buckets M; =

n/1000, #slaves = 8, #layers p = 1.

Fig. 10. (a) Execution times for e-proximity cluster labeling with respect to the number of slaves. (b) Execution times for e-proximity cluster labeling with respect

to the dataset size n.
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