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Abstract. We describe in this paper the theory and practice behind a
new modal clustering method for binary data. Our approach (BinNNMS)
is based on the nearest neighbor median shift. The median shift is an
extension of the well-known mean shift, which was designed for contin-
uous data, to handle binary data. We demonstrate that BinNNMS can
discover accurately the location of clusters in binary data with theoretical
and experimental analyses.
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1 Introduction

The goal of clustering (unsupervised learning) is to assign cluster membership to
unlabeled candidate points where the number and location of these clusters are
unknown.Clustering is an important step in the exploratory phase of data analysis,
and it becomes more difficult when applied to binary or mixed data. Binary data
occupy a special place in many application fields: behavioral and social research,
survey analysis, document clustering, and inference on binary images.

Clusters are formed usually from a process that minimizes the dissimilari-
ties inside the clusters and to maximizes the dissimilarities between clusters. A
popular clustering algorithm for binary data is the k-modes [8], and it is sim-
ilar to the k-means clustering [14] wherein the modes are used instead of the
means for the prototypes of the clusters. Other clustering algorithms have been
developed using a matching dissimilarity measure for categorical points instead
of Euclidean distance [12], and a frequency-based method to update modes in
the clustering process [10].

In this paper, we focus on the mean shift clustering [5,6], which is another gen-
eralization of the k-means clustering. Mean shift clustering belongs to the class
of modal clustering methods where the arbitrarily shaped clusters are defined in
terms of the basins of attraction to the local modes of the data density, created by
the density gradient ascent paths. In the traditional characterization of the mean
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I. Farkaš et al. (Eds.): ICANN 2021, LNCS 12895, pp. 101–112, 2021.
https://doi.org/10.1007/978-3-030-86383-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86383-8_8&domain=pdf
http://orcid.org/0000-0002-5228-2666
http://orcid.org/0000-0001-7245-6371
http://orcid.org/0000-0001-6876-0688
http://orcid.org/0000-0002-1198-3482
https://doi.org/10.1007/978-3-030-86383-8_8


102 G. Beck et al.

shift, these gradient ascent paths are computed from successive iterations of the
mean of the nearest neighbors of the current prototype. Due to its reliance on mean
computations, it is not suited to be directly applied to binary data. Our contribu-
tion is the presentation of a modified mean shift clustering which is adapted to
binary data. It is titled Nearest Neighbor Median Shift clustering for binary data
(BinNNMS). The main novelty is the that the cluster prototypes are updated via
iterations on the majority vote of their nearest neighbors. We demonstrate that
this majority vote corresponds to the median of the nearest neighbors with respect
to the Hamming distance [7].

The rest of the paper is organized as follows: Sect. 2 introduces the traditional
mean-shift algorithm for continuous data, Sect. 3 presents our new median shift
clustering procedure for binary data BinNNMS, and Sect. 4 describes the results
of the BinNNMS compared to the k-modes clustering.

2 Nearest Neighbor Mean Shift Clustering
for Continuous Data

The mean shift clustering proceeds in an indirect manner based on local gradients
of the data density, and without imposing an ellipsoidal shape to clusters or
that the number of clusters be known, as is the case for k-means clustering.
For a candidate point x, the mean shift method generates a sequence of points
{x0,x1, . . . },xj ∈ R

d, j = 1, 2, . . . , which follows the gradient density ascent.
The theoretical mean shift recurrence relation is

xj+1 = xj +
ADf(xj)

f(xj)
(1)

for a given positive-definite matrix A, for j ≥ 1 and x0 = x. The output from
Eq. (1) is the sequence {xj}j≥0 which follows the density gradient ascent Df to
a local mode of the density function f .

To derive the formula for the nearest neighbor mean shift for a random
sample X1, . . . ,Xn drawn from a common density f , we replace the density f
and density gradient Df by their nearest neighbor estimates

f̂NN(x; k) = n−1δ(k)(x)−d
n∑

i=1

K((x − Xi)
δ(k)(x))

Df̂NN(x; k) = n−1δ(k)(x)−d−1
n∑

i=1

DK((x − Xi)
δ(k)(x))

(2)

where K is a kernel function and δ(k)(x) as the k-th nearest neighbor distance
to x, i.e. δ(k)(x) is the k-th order statistic of the Euclidean distances ‖x −
X1‖, . . . , ‖x−Xn‖. These nearest neighbor estimators were introduced by [13]
and elaborated by [5,6] for the mean shift.

These authors established that the beta family kernels are computationally
efficient for estimating f and Df for continuous data. The uniform kernel is the
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most widely known member of this beta family, and it is defined as K(x) =
v−1
0 1{x ∈ Bd(000, 1)} where Bd(x, r) is the d-dimensional hyper-ball centered at
x with radius r and v0 is the hyper-volume of the unit d-dimensional hyper-ball
Bd(000, 1). With this family of kernels, and the choice A = (d+2)−1δ(k)(x)Id, the
nearest neighbor mean shift becomes

xj+1 = k−1
∑

X i∈NNk(xj)

Xi (3)

where NNk(x) is the set of the k nearest neighbors of x. For the derivation of
Eq. (3), see [4,6]. This nearest neighbor mean shift has a simple interpretation
since in the mean shift recurrence relation, the next iterate xj+1 is the sample
mean of the k nearest neighbors of the current iterate xj . On the other hand,
as these iterations calculate the sample mean, the mean shift is not directly
applicable to binary data.

3 Nearest Neighbor Median Shift Clustering for Binary
Data

A categorical feature, which has a finite (usually small) number of possible values,
can be represented by a binary vector, i.e. a vector which is composed solely of
zeroes and ones. These categorical features can either ordinal (which have an
implicit order) or can be nominal (which no order exists). Table 1 presents the
two main types of the coding for a categorical feature into a binary vector,
additive and disjunctive, for an example of 3-class categorical feature.

Table 1. Additive and disjunctive coding for a 3-class categorical feature.

Class Additive coding Disjunctive coding

1 1 0 0 1 0 0

2 1 1 0 0 1 0

3 1 1 1 0 0 1

The usual Euclidean distance is not adapted to measuring the dissimilarities
between binary vectors. A popular alternative is the Hamming distance H [11].
The Hamming distance between two binary vectors x1 = (x11, . . . , x1d) and
x2 = (x21, . . . , x2d), xj ∈ {0, 1}d, j ∈ 1, 2, is defined as:

H(x1,x2) =
d∑

j=1

|x1j − x2j |

= d − (x1 − x2)�(x1 − x2). (4)

Equation (4) measures the number of mismatches between the two vectors x1

and x2: as the inner product (x1−x2)�(x1−x2) counts the number of elements
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which agree in both x1 and x2, then d− (x1 −x2)�(x1 −x2) counts the number
of disagreements.

The Hamming distance is the basis from which we define the median center of
a set of observations X = {X1, . . . ,Xn},Xi ∈ {0, 1}d, i = 1, . . . , n. Importantly
the median center of the set of binary vectors, as a measure of the centrality of
the values, remains a binary vector, unlike the mean vector which can take on
intermediate values. The median center of X is a point w = (w1, . . . , wd) which
minimizes the inertia of X , i.e.

w = argmin
x∈{0,1}d

I(x) (5)

where

I(x) =
n∑

i=1

πiH(Xi,x) =
n∑

i=1

d∑

j=1

πiI(xj),

and πi are the weights and I(xj) = |Xij − xj |.

Each component wj of w minimizes I(xj). In the case where all the weights
are set to 1, πi = 1, i = 1, . . . , n, the wj can be easily computed since it is
the most common value in the observations of the j-th feature. This is denoted
as maj(X ), the component-wise majority vote winner among the data points.
Hence the median center is the majority vote, w = maj(X ).

If we minimize the cost function in Eq. (5) using the dynamic clusters [3]
then this leads to the k-modes clustering. Like the k-means algorithm, the k-
modes operates in two steps: (a) an assignment step which assigns each candidate
point x to the nearest cluster with respect to the Hamming distance, and (b)
an optimization step which computes the median center as the majority vote.
These two steps are executed iteratively until the value of I(x) converges.

Now we show how the median center can be utilized to define a new modal
clustering for binary data based on the mean shift paradigm. In Sect. 2, the beta
family kernels were used in the mean shift for continuous data. The most com-
monly used smoothing kernel, introduced by [1], for binary data is the Aitchison
and Aitken kernel:

Kλ(x) = λd−x�x(1 − λ)x
�x , x ∈ {0, 1}d.

Observe that the exponent for λ is the Hamming distance of x. The tuning
parameter 1

2 ≤ λ ≤ 1 controls the spread of the probability mass around the
origin 000:

– For λ = 1/2, then K1/2(x) = (1/2)d, which assigns a constant probability to
all points x, regardless of its distance from 000.

– For λ = 1, K1(x) = 1{x = 000}, which assigns all the probability mass to 000.
– For intermediate values of λ, we have intermediate assignment of between

point and uniform probability mass.
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Using Kλ, the corresponding kernel density estimate is

f̃(x;λ) = n−1
n∑

i=1

λ[d−(x−X i)
�(x−X i)](1 − λ)[(x−X i)

�(x−X i)]. (6)

Since the gradient of the kernel Kλ is DKλ(x) = 2x log((1 − λ)/λ)Kλ(x), the
density gradient estimate is

Df̃(x;λ) = 2 log(λ/(1 − λ))n−1

[ n∑

i=1

XiKλ(x − Xi) − x

n∑

i=1

Kλ(x − Xi)
]
.

(7)

To progress in our development of a nearest neighbor median shift for binary
data, we focus on the point mass kernel K1(x) = 1{x = 000}. In order that ensure
that it is amenable for the median shift, we modify K1 with two main changes:

1. K1 is multiplied by the indicator function 1{x ∈ Bd(000, 1)}
2. the indicator function 1{x = 000}, which places the point mass at the center 000,

is replaced an indicator that places it on maj(Bd(000, 1)), where maj(Bd(000, 1))
is the majority vote winner/median center of the data points X1, . . . ,Xn

inside of Bd(000, 1).

This second modification results in an asymmetric kernel as the point mass is no
longer always placed in the centre of the unit ball. This modified, asymmetric
kernel L is

L(x) = 1{x = maj(Bd(000, 1))}1{x ∈ Bd(000, 1)}.

Since L is not directly differentiable, we define its derivative indirectly via
DK1 and the convention that log(λ/(1 − λ)) = 1 for λ = 1. As DKλ(x)

∣∣
λ=1

=
2xK1(x) then analogously we define DL(x) = 2xL(x). To obtain the corre-
sponding estimators, we substitute L,DL for K,DK in f̃ ,Df̃ in Eqs. (6)–(7) to
obtain f̂ ,Df̂ :

f̂(x; k) = n−1δ(k)(x)
−d

n∑

i=1

L((x −X i)/δ(k)(x))

Df̂(x; k) = 2δ(k)(x)
−d−1n−1

[ n∑

i=1

X iL((x −X i)/δ(k)(x))− x

n∑

i=1

L((x −X i)/δ(k)(x))

]
.

(8)

To obtain a nearest neighbor mean shift recurrence relation for binary data,
we substitute f̂ ,Df̂ for f,Df is Eq. (1). For these estimators, the appropriate
choice of A = 1

2δ(k)(x)Id. Then we have

xj+1 = xj +
δ(k)(x)

2
Df̂(xj ; k)

f̂(xj ; k)

=
∑n

i=1 XiL((xj − Xi)/δ(k)(xj))∑n
i=1 L((xj − Xi)/δ(k)(xj))

.
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We can simplify this ratio if we observe that the scaled kernel is

L((x − Xi)/δ(k)(x)) = 1{Ximaj(Bd(x, δ(k)(x)))} · 1{Xi ∈ Bd(x, δ(k)(x))};

and that Bd(x, δ(k)(x)) comprises the k nearest neighbors of x, then 1{Xi ∈
Bd(x, δ(k)(x))} = 1{Xi ∈ NNk(x)}. If m is the number of nearest neighbors of
xj which coincide with the majority vote, then

xj+1 =

∑
X i∈NNk(xj)

Xi1{Xi = maj(NNk(xj))}∑
X i∈NNk(xj)

1{Xi = maj(NNk(xj))}

=
m · maj(NNk(xj))

m
= maj(NNk(xj)). (9)

Therefore in the median shift recurrence relation in Eq. (9), the next iterate xj+1

is the median center of the k nearest neighbors of the current iterate xj . Thus,
once the binary gradient ascent has terminated, the converged point can be
decoded using Table 1), allowing for its unambiguous symbolic interpretation.
The gradient ascent paths towards the local modes produced by Eq. (9) form
the basis of Algorithm 1, our nearest neighbor median shift clustering for binary
data method (BinNNMS).

The inputs to BinNNMS are the data sample X1, . . . ,Xn and the candi-
date points x1, . . . ,xm which we wish to cluster (these can be the same as
X1, . . . ,Xn, but this is not required); and the tuning parameters: the number
of nearest neighbors k1 used in BGA task, the maximum number of iterations
jmax, and the tolerance under which two cluster centres are considered form
a single cluster ε. The output are the cluster labels of the candidate points
{c(x1), . . . , c(xm)}.

The aim of the ε-proximity cluster labeling step is to gather all points which
are under a threshold ε. In order to apply this method we have to build the
Hamming similarity matrix which has a O(n2) time complexity. We initialize
the process by taking first point and cluster with it all point whose distance
is less than ε. Thus we apply this iterative exploration process by adding the
nearest neighbors. Once the first cluster is generated, we take another point
from the reduced similarity matrix and repeat the process, until all points are
assigned a cluster label. A notable problem still remains with the choice of main
tuning parameter ε: we set it to be the average of distance from each point to
their k2 nearest neighbors.
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Algorithm 1. BinNNMS – Nearest neighbor median shift clustering for binary
data

Input: {X1, . . . ,Xn}, {x1, . . . ,xm}, k1, k2, jmax

Output: {c(x1), . . . , c(xm)}
/* BGA task: compute binary gradient ascent paths */

1: for � := 1 to m do
2: j := 0; x�,0 := x�;
3: x�,1 := maj(NNk1(x�,0));
4: while j < jmax do
5: j := j + 1;
6: x�,j+1 := maj(NNk1(x�,j));

7: x∗
� := x�,j ;

/* ε-proximity cluster labeling task: create clusters by merging near final
iterates*/

8: for �1, �2 := 1 to m do
9: if H(x∗

�1 ,x∗
�2) ≤ ε(k2) then c(x∗

�1) := c(x∗
�2);

4 Numerical Experiments

In this section, we present an experimental comparison of the BinNNMS to the
k-modes clustering (as outlined in Sect. 3). Table 2 lists the details of the dataset
obtained from the UCI Machine learning repository [2].

– The Zoo data set contains n = 101 animals described with 16 categorical
features: 15 of the variables are binary and one is numeric with 6 possible
values. Each animal is labelled 1 to 7 according to its class. Using disjunctive
coding for the categorical variable with 6 possible values, the data set consists
of a 101 × 21 binary data matrix.

– The Digits data concerns a dataset consisting of the handwritten numerals
(“0”–“9”) extracted from a collection of Dutch utility maps. There are 200
samples of each digit so there is a total of n = 2000 samples. As each sample
is a 15 × 16 binary pixel image, the dataset consisted of a 2000 × 240 binary
data matrix.

– The Spect dataset describes the cardiac diagnoses from Single Proton Emis-
sion Computed Tomography (SPECT) images. Each patient is classified into
two categories: normal and abnormal; there are n = 267 samples which are
described by 22 binary features.

– The Soybean data is about 19 classes, but only the first 15 have been justified
as it appears that the last four classes are not well-defined. There are 35
categorical attributes, with both nominal and ordinal features.

– The Car dataset contains examples with the structural information of the
vehicle is removed. Each instance is classified into 4 classes. This database
is highly unbalanced since the distribution of the classes is (70.02%, 22.22%,
3.99%, 3.76%).
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Table 2. Overview of experimental datasets.

Dataset size (n) #features (d) #classes (M)

Zoo 101 26 7

Digits 2000 240 10

Spect 267 22 2

Soybean 307 97 18

Car 1728 15 4

4.1 Comparison of the k-Modes and the BinNNMS Clustering

To evaluate the clustering quality, we compare the known cluster labels in Table 2
to the estimated cluster labels from BinNNMS and k-modes. For comparability,
the k-modes clustering is also based on the binary median center from Eq. (5).
Values of the Adjusted Rand Index (ARAND) [9] and the normalized mutual
information (NMI) [15] close to one indicate highly matched cluster labels, and
values close to zero for the NMI/less than zero for the ARAND) indicate mis-
matched cluster labels. Our scala codes to reproduce all results are available at
https://github.com/Clustering4Ever/Clustering4Ever.

Table 3 reports the results in terms of the NMI and ARAND after 10 runs of
the BinNNMS and k-modes. Unlike BinNNMS, the k-modes clustering requires
an a priori number of clusters k, then we set k to be whichever value between
the target number of classes from Table 2, or to be the number of clusters
obtained from the BinNNMS clustering gives the highest clustering accuracy.
The BinNNMS, apart from the Car dataset, outperforms the k-modes algorithm
on Zoo, Digits, Spect, and Soybean datasets. Upon further investigation for the
Car dataset, recall that the distribution of the cluster labels is highly unbal-
anced which leads the BinNNMS giving a single class (i.e. no clustering). These
unbalanced clusters also translate into low values of the NMI and ARAND for
the k-modes clustering.

4.2 Comparison of the Quantization Errors for the BinNNMS

An important and widely used measure of resolution, the quantization error, is
computed based on Hamming distances between the data points and the cluster
prototypes:

Error =
1
n

M∑

m=1

∑

xj∈Cm

H(xj ,wm) (10)

where {C1, . . . , CM} is the set of M clusters, x is a point assigned to cluster Cm,
and wm is the prototype.median center of cluster Cm.

The right hand column in Fig. 1 shows the evolution of the quantization errors
for the BinNNMS with different values of k1 with respect to the target cluster
prototypes. As the quantization errors decrease this implies that the data points

https://github.com/Clustering4Ever/Clustering4Ever
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Table 3. Comparison of clustering quality indices (NMI and ARAND) for k-modes
and BinNNMS. The bold value indicates the most accurate clustering for the dataset.

NMI

Dataset k-modes k BinNNMS

Digits 0.360 ± 0.011 40 0.880 ± 0.000

Zoo 0.789 ± 0.023 8 0.945 ± 0.000

Soybean 0.556 ± 0.000 40 0.743 ± 0.000

Spect 0.135 ± 0.000 47 0.145 ± 0.000

Car 0.039 ± 0.019 4 Single class

ARAND

Dataset k-modes k BinNNMS

Digits 0.166 ± 0.021 40 0.876 ± 0.000

Zoo 0.675 ± 0.032 8 0.904 ± 0.000

Soybean 0.178 ± 0.000 40 0.331 ± 0.000

Spect −0.009 ± 0.055 2 −0.019 ± 0.000

Car 0.016 ± 0.039 4 Single class

converge toward their cluster prototypes, and that the decreasing intra-cluster
distance further facilitates the clustering process. Thus at the end of the training
phase, the data points converge towards to their local mode. In comparison with
the ARAND scores in Table 3, the magnitude of the decrease in the quantization
errors is inversely proportional to the cluster quality indices. That is, the largest
decrease for the Digits dataset implies that BinNNMS clustering achieves here
the highest ARAND score.

If we run the labeling phase during the BGA phase for a fixed k1 then we
compute the intermediate prototypes wm of the clusters Cm during the binary
gradient ascent BGA task. Since BinNNMS provides clusters as the basins of
attraction to the local median created by the binary gradient ascent paths, the
left column of Fig. 1 shows the quantization error with respect to the intermediate
median centers/prototypes. In this case we compute at each iteration 7 modes
for Zoo dataset, 10 modes for the Digits, 18 modes for Soybean and 2 modes
for Spect datasets using ground truth. These quantization errors decrease to an
asymptote for all datasets as the iteration number increases.

Visual Comparison of k-modes and BinNNMS on the Digit Dataset:
to obtain a visual representations of binary digit dataset we have the pos-

sibility to transform the binary vector into a binary image where each pixel
represent one dimension. We present here prototypes of ground truth and clus-
tering results. Figure 2 show the cluster prototypes provided by k-modes and
BinNNMS, displayed as 15 × 16 binary pixel images. For the k-modes image,
the cluster prototype for the “4” digit has been incorrectly associated with the
“9” cluster. On the other hand, the BinNNMS image correctly identifies all ten
digits from “0” to “9”.
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Digits

Zoo

Soybean

Spect

Fig. 1. Evolution of quantization errors as a function of the k1 and k2 tuning parame-
ters in BinNNMS for the Digits, Zoo, Soybean and Spect datasets. Left. Quantization
errors between the data points and the target prototypes. Right. Quantization errors
between the data points and the intermediate median centers in the BGA task and the
cluster prototypes.
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k-modes BinNNMS

Fig. 2. Comparison of the k-modes and BinNNMS clustered images for the Digits
dataset.

5 Conclusion

In this paper, we have proposed a new and efficient modal clustering method
for binary data. We introduced a mathematical analysis of the nearest neigh-
bor estimators for binary data. This was then combined with the Aitchison and
Aitken kernel in order to generalize the traditional mean shift clustering to the
median shift clustering for binary data (BinNNMS). Experimental evaluation
for a number of experimental datasets demonstrated that the BinNNMS outper-
formed the k-modes clustering in terms of visual criteria, as well as quantita-
tive clustering quality criteria such as the adjusted Rand index, the normalized
mutual information and the quantization error. In the future we envisage to
make our algorithm as automatic as possible by optimizing the choice of the
tuning parameters, and to implement a scalable version for Big Data by using
approximate nearest neighbor searches.
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