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Abstract Multivariate kernel density estimation is an important technique in ex-
ploratory data analysis. Its utility relies on its ease of interpretation, especially by
graphical means. The crucial factor which determines the performance of kernel
density estimation is the bandwidth matrix selection. Research in finding optimal
bandwidth matrices began with restricted parameterizations of the bandwidth matrix
which mimic univariate selectors. Progressively these restrictions were relaxed to de-
velop more flexible selectors. In this paper, we propose the first plug-in bandwidth
selector with the unconstrained parameterizations of both the final and pilot selec-
tors. Up till now, the development of unconstrained pilot selectors was hindered by
the traditional vectorization of higher-order derivatives which lead to increasingly in-
tractable matrix algebraic expressions. We resolve this by introducing an alternative
vectorization which gives elegant and tractable expressions. This allows us to quan-
tify the asymptotic and finite sample properties of unconstrained pilot selectors. For
target densities with intricate structure (such as multimodality), our unconstrained
selectors show the most improvement over the existing plug-in selectors.
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1 Introduction

Data smoothing is an important tool in statistical exploratory data analysis. Kernel
density estimation can be considered a fundamental setting for studying data smooth-
ing. By this we mean that what we learn from kernel density estimation can be applied
to other data smoothing contexts, e.g., regression, classification, goodness-of-fit test-
ing, and bump-hunting; see the monographs of Silverman (1986), Wand and Jones
(1995), and Simonoff (1996). Apart from this role as a learning ground for other
smoothing problems, kernel density estimation is a useful technique in its own right.

For a d-variate random sample X1,X2, . . . ,Xn drawn from a density f , the kernel
density estimator is

f̂nH(x) = n−1
n∑

i=1

KH(x − Xi ), (1)

where x = (x1, x2, . . . , xd)T and Xi = (Xi1,Xi2, . . . ,Xid)T , i = 1,2, . . . , n. Here
K(x) is the multivariate kernel, which we assume to be a spherically symmetric
probability density function having a finite second-order moment, i.e., there exists
m2(K) ∈ R such that m2(K)Id = ∫

Rd xxT K(x)dx, where Id is the d × d identity
matrix. The parameter H is the bandwidth matrix, which is symmetric and positive
definite; and KH(x) = |H|−1/2K(H−1/2x).

The crucial factor for kernel density estimation is to select an optimal value for
the bandwidth matrix. In common with the majority of researchers in this field, we
use the Mean Integrated Squared Error (MISE) as our optimality criterion:

MISE(H) ≡ MISE(f̂nH) = E

∫

Rd

{
f̂nH(x) − f (x)

}2
dx.

For this criterion to make sense, we assume henceforth that both K and f are square
integrable. The ideal MISE-optimal bandwidth selector is

HMISE = argmin
H∈F

MISE(H),

where F is the set of all symmetric and positive definite d × d matrices. This ideal
selector however is unattainable since the MISE does not have a tractable closed
form in general. A common approach is to seek a tractable approximation, AMISE,
which contains the leading terms in the asymptotic expansion of MISE. Details of
this expansion are deferred to Sect. 2.2. All that we need at the moment is that the
tractability of AMISE allows us to find the AMISE-optimal selector

HAMISE = argmin
H∈F

AMISE(H),

which serves as our surrogate for HMISE.
Plug-in bandwidth selectors are a major class of bandwidth selectors derived from

this AMISE expansion. In the one-dimensional case, these selectors have a fast rate
of asymptotic convergence and good finite-sample properties; see Park and Marron
(1990) and Sheather and Jones (1991). The key to this performance is the selection of
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pilot bandwidths defined in terms of functionals of higher derivatives of the density
function f . In more recent research, these plug-in selectors have been extended to the
multidimensional case; see Wand and Jones (1994) and Duong and Hazelton (2003).
In order to simplify the theoretical computations, these authors use univariate pilot
bandwidths, which are not optimal for multivariate data. Thus they sacrifice flexibility
for ease of computation. In this paper, we develop unconstrained pilot bandwidth
matrices, thus opening the possibility for more flexible plug-in selectors.

In Sect. 2, we review the existing framework for plug-in selectors. We note that
extending this framework is hampered by that higher-order (greater than two) deriva-
tives of the density function exhibit mathematical difficulties. In Sect. 3, we develop
an alternative formulation of these functionals, which leads to a more systematic ap-
proach to their definition and estimation. From this, we define unconstrained pilot
bandwidth matrices. A multistage plug-in bandwidth selector is proposed in Sect. 4,
which incorporates these unconstrained pilot matrices, and its rate of convergence to
the AMISE-optimal selector is established. Section 5 contains a numerical simula-
tion study which compares the performance of this new selector with existing plug-in
selectors. We end with some concluding remarks.

2 Plug-in bandwidth selectors

2.1 Vectors of higher-order derivatives

Here we establish some notation to be used throughout the paper.
For any two matrices A and B, we will write its Kronecker product as A ⊗ B. This

way, we will denote by

A⊗r =
r⊗

i=1

A =
r matrices︷ ︸︸ ︷

A ⊗ · · · ⊗ A

the r th Kronecker power of A. If A ∈ Mm×n (i.e., A is a matrix of order m×n), then
A⊗r ∈ Mmr×nr ; therefore, we adopt the convention A⊗1 = A and A⊗0 = 1 ∈ R.

Also, for any function f : Rd → R, we denote its gradient vector by

Df = (∂f/∂x1, . . . , ∂f/∂xd)T ∈ R
d,

where AT denotes the transpose of a matrix A. For the higher-order derivatives of f ,
instead of arranging them into a matrix, as usual, we prefer to arrange them into
a vector. Namely, we will write D⊗rf ∈ R

dr
for the vector containing all the par-

tial derivatives of order r . Our formal definition of this vectorized derivative, if we
understand (∂/∂xi)(∂/∂xj ) = ∂2/(∂xi∂xj ), is D⊗rf = (Df )⊗r = ∂rf/(∂x)⊗r with
x = (x1, . . . , xd)T .

Notice that, with this vector notation, we can give a simple expression for the
multivariate Taylor polynomial. Precisely, if all the elements in D⊗pf are continuous
in a neighborhood of x ∈ R

d , then we can write

f (x + h) =
p∑

r=0

1

r!
(
h⊗r

)T
D⊗rf (x) + o

(‖h‖p
)
, h ∈ R

d , (2)
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with ‖ · ‖ standing for the Euclidean norm.
In the following, we will also write vec A and vech A for the vector and vector

half operators, respectively, applied to a symmetric matrix A (see Henderson and
Searle 1979). For instance, if Hf = ∂2f/(∂x∂xT ) ∈ Md×d denotes the Hessian ma-
trix of f , it follows that vec Hf = D⊗2f . Besides, for a function f : Rd → R

p , we
introduce the notation R(f ) = ∫

Rd f (x)f (x)T dx ∈ Mp×p , which is a positive def-

inite symmetric matrix such that vec R(f ) = ∫
Rd f (x)⊗2dx ∈ R

p2
. We will omit the

bold font if R(f ) ∈ R (i.e., when p = 1).

2.2 Alternative expressions for AMISE

We can decompose MISE(H) = ISB(H) + IV(H), where the integrated square bias
(ISB) and integrated variance (IV) terms are given by ISB(H) = ∫

Rd {Ef̂nH(x) −
f (x)}2dx and IV(H) = ∫

Rd Var f̂nH(x) dx.
Plug-in methods for choosing the bandwidth matrix rely on an asymptotic form

of the MISE, known as the AMISE. The usual expression of AMISE contains an
approximation of the ISB as a quadratic form of vech H. Concretely, if all the ele-
ments in D⊗2f are bounded, continuous, and square integrable and if vech H → 0 and
n−1|H|−1/2 → 0 as n → ∞, then Wand (1992) shows that MISE(H) = AMISE(H)+
o(n−1|H|−1/2 + ‖vech H‖2) with

AMISE(H) = n−1|H|−1/2R(K) + m2(K)2

4

(
vechT H

)
�4(vech H), (3)

where �4 is the 1
2d(d + 1) × 1

2d(d + 1) matrix given by

�4 =
∫

Rd

vech
{
2Hf (x) − dg Hf (x)

}
vechT

{
2Hf (x) − dg Hf (x)

}
dx.

Here dg Hf denotes the diagonal matrix formed by replacing all off-diagonal entries
of Hf by zeroes.

Notice that �4 = DT
d R(D⊗2f )Dd with Dd standing for the duplication matrix of

order d (see Magnus and Neudecker 1980). This way, we can rewrite

AMISE(H) = n−1|H|−1/2R(K) + m2(K)2

4

(
vecT H

)
R

(
D⊗2f

)
(vec H). (4)

Moreover, applying the well-known property that vec(ABC) = (CT ⊗A)vec B to the
second summand, we get

AMISE(H) = n−1|H|−1/2R(K) + m2(K)2

4

(
vecT H

)⊗2 vec R
(
D⊗2f

)
. (5)

In this last formulation, the sense of a quadratic form for the ISB is somehow missing,
but perhaps this form is the one that bears the strongest resemblance to the univariate
case (see Rosenblatt 1956).

Expressions (4) and (5) are defined in terms of vec H. Since vech H is the smallest
vector which contains all the unique elements of H, such expressions are not minimal
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in this sense. But when expressed in terms of vec H, the matrix analysis is more
straightforward, as we will see in the following sections.

Given any of the AMISE approximations, we will change our goal of estimat-
ing HMISE for estimating its surrogate HAMISE, which is defined as the minimizer of
AMISE(H) over F . It is easy to show that HAMISE is a reasonably good approxima-
tion to HMISE; see Duong and Hazelton (2005a, Remark 5).

Wand (1992) states that, unlike the univariate case, it is not possible to give a
closed explicit formula for HAMISE using expression (3). The same holds for expres-
sions (4) and (5). Therefore, our strategy for estimating HAMISE would be based on
estimating the AMISE function in the first place and then choosing the plug-in band-
width selector Ĥ as the minimizer of the estimated criterion. As the only unknown
term in the AMISE function is R(D⊗2f ), this raises the new problem of estimating
this parameter, which is indeed a matrix of order d2 ×d2. The different approaches to
the estimation of R(D⊗2f ) or �4 give rise to different versions of the plug-in band-
width matrix selector. We review some of the existing proposals for this problem, and
introduce our new, improved one, in the next section.

3 Estimation of integrated density derivative matrices

The elements of vec R(D⊗2f ) or �4 are integrals of products of density derivatives
of f . Hall and Marron (1987), amongst others, have studied element-wise estima-
tors of these functionals. These studies have focused on optimally estimating scalar
functionals for univariate density estimation. For multivariate data, these functionals
are arranged in a matrix which adds difficulties, so less attention has been directed
towards them.

Wand and Jones (1994) applied existing optimal scalar functional estimators
element-wise to construct the first estimator of the integrated density derivative ma-
trix �4. With this element-wise estimator, they did not need to reconsider the ques-
tion of pilot selectors for matrix estimates. Writing the fourth-order integrated den-
sity derivatives as �4 allows easy differentiation of the AMISE in (3) with respect to
vech H.

The Duong and Hazelton (2003) selector modified the Wand and Jones (1994) es-
timator to a matrix-wise one. The former showed this to have better theoretical and
numerical properties. The pilot selector developed by Duong and Hazelton (2003)
for their matrix-wise estimator is parameterized as a positive scalar multiplied by
the identity matrix. This constrained parameterization was chosen to obtain explicit
expressions for the pilot selector by reducing it to univariate analysis. The aforemen-
tioned two pilot selectors appear to be the only ones currently available for plug-in
selectors.

Our proposed selector is also based on a matrix-wise estimator of �4 but with
the added flexibility of pilot selectors parameterized as unconstrained matrices. We
develop some new matrix analysis results to find explicit expressions for these un-
constrained selectors. We go further, as we show in Sect. 3.2, by allowing some re-
dundancy in rearranging �4 into vec R(D⊗2f ) and by taking derivatives with respect
to vec H. In contrast, the subsequent matrix analysis is simplified substantially so that
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we are able to construct unconstrained pilot selectors. This was not feasible with the
previous two plug-in selectors.

3.1 The existing proposals

3.1.1 The method of Wand and Jones (1994)

Wand and Jones (1994) notice that every element in the matrix �4 can be written as
the integrated density derivative functional

ψr =
∫

Rd

f (r)(x)f (x) dx

for some multiindex r = (r1, . . . , rd) ∈ N
d
0 such that |r| = ∑d

i=1 ri = 4, where we are
denoting

f (r) = ∂ |r|f
∂x

r1
1 · · · ∂x

rd
d

.

Therefore, they proposed an element-wise estimate of �4, where every element ψr
in �4 is estimated by

ψ̂r(G) = n−2
n∑

i,j=1

(LG)(r)(Xi − Xj ).

Here the pilot bandwidth G and the kernel L may differ from H and K , respectively.
As every ψr is a real number, Wand and Jones (1994) measure the error

of the estimate ψ̂r(G) through the mean-squared error function, MSEr(G) =
E[{ψ̂r(G) − ψr}2]. Wand (1992) provides an asymptotic approximation of this MSE
function, the AMSE, but shows that explicit minimization of AMSEr(G) is possible
only if we restrict the pilot bandwidth matrix to be of the form G = g2Id with g > 0.
Moreover, Wand and Jones (1994) state that for general d and unconstrained G, it is
difficult even to provide succinct expressions for the estimator ψ̂r(G) itself, so they
focus on the bivariate case.

Besides, Wand and Jones (1994) highlight the fact that, if we want to use an un-
constrained bandwidth matrix H in the estimation of f , then the number of function-
als ψr that we must estimate (therefore, the number of pilot bandwidths g that we
must choose) increases drastically with the dimension, and, thus, they also restrict
themselves to the case of a diagonal H. However, in some situations, the use of a
diagonal H could cause a considerable loss in efficiency; see Wand and Jones (1993)
and Chacón (2009).

3.1.2 The method of Duong and Hazelton (2003)

Duong and Hazelton (2003) propose a plug-in method for selecting an unconstrained
bandwidth matrix H which is similar to the one described above. However, they re-
mark an important drawback of the previous approach: if the elements of the matrix
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�4 are estimated separately, using kernel estimators with different pilot bandwidths,
then the resulting matrix estimate may not be positive definite, leading to an AMISE
estimate not having a finite global minimum, so that no plug-in bandwidth estimate
is obtained in those cases.

To overcome this difficulty, they recommend choosing the same pilot bandwidth
G for all the ψ̂r(G) estimates with |r| = 4. This is equivalent to estimating �4 =
DT

d R(D⊗2f )Dd with the matrix estimate DT
d R(D⊗2f̂nG)Dd . This way, in addition to

the fact that only one pilot bandwidth needs to be chosen, the use of a plug-in matrix
estimator guarantees that the resulting estimate is always positive definite.

They define their optimal pilot bandwidth as the one minimizing the sum of the
MSEs corresponding to all the ψr elements in �4; that is, the asymptotically optimal
G is the one minimizing SAMSE(G) = ∑

|r|=4 AMSEr(G). Nevertheless, in Duong
and Hazelton (2003), a procedure for using an unconstrained G is not provided either,
and the restriction G = g2Id is also imposed on the pilot bandwidth matrix.

3.1.3 Problems with scaling procedures

Both methods, the one proposed by Wand and Jones (1994) and the one by Duong
and Hazelton (2003) share the undesirable feature that the pilot bandwidth matrix is
restricted to be of the form G = g2Id for g > 0. This bandwidth matrix parameteri-
zation should not be used blindly for multivariate unscaled data, as shown by Wand
and Jones (1993). Therefore, Duong and Hazelton (2003) propose to pre-scale or pre-
sphere the data before applying the plug-in selection method, and then to transform
back to obtain the plug-in bandwidth matrix for the original data (see also Duong and
Hazelton 2005b).

The goal of these transformations is to get the transformed data to have the same
dispersion in all the coordinate directions. However, even if that is the case, the band-
width matrix with a single smoothing parameter could be a bad idea in some situa-
tions. To illustrate this, let us consider two densities that we are going to use later in
Sect. 5, namely, the Correlated Normal and the Separated Bimodal (test densities #2
and #7, respectively). In Fig. 1, we depict the scatterplots of a sample of size n = 5000
coming from the aforementioned densities, together with the corresponding scatter-
plots for the sphered data. We see that data coming from the first distribution certainly
seem to have a spherically symmetric distribution when the sphering transformation
is applied. However, for the second distribution, although we get the variance ma-
trix of the transformed data to be the identity, these data do not seem to follow a
spherically symmetric distribution at all, because their bimodality is retained after
the transformation. So, there is still much to lose if we use the single-smoothing-
parameter parameterization even for the sphered data.

3.2 Unconstrained pilot bandwidth matrices

In this section, we provide a method for estimating the AMISE function which does
not impose any constraint on the pilot bandwidth matrix and therefore does not need
any pre-transformation of the data for its application.

Motivated by the analysis in Sect. 2.2, here we are going to study the problem
of estimating the matrix R(D⊗sf ) ∈ Mds×ds for a general s ∈ N. We are going to
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Fig. 1 Scatterplots for samples of size n = 5000 from the Correlated Normal and Separated Bimodal
distributions (left column, top to bottom) and the corresponding sphered data (right column)

proceed as in Sect. 3.5 of Wand and Jones (1995), because there the same problem
is studied in the univariate case. In this sense, our estimator is a multivariate gener-
alization of the one studied in Jones and Sheather (1991) (see also Hall and Marron
1987). However, notice that this generalization to the multivariate case for general d

and unconstrained bandwidth matrices is far from trivial, as Wand and Jones (1994)
themselves recognize.

If we define

ψ r =
∫

Rd

D⊗rf (x)f (x) dx ∈ R
dr

,

then using integration by parts, it is easy to show, under sufficient smoothness as-
sumptions on f , that vec R(D⊗sf ) = (−1)sψ2s . Therefore, the problem of estimat-
ing the matrix R(D⊗sf ) is equivalent to that of estimating the vector ψ r for r even.

The fact that ψ r = ED⊗rf (X) for any random variable X with density f motivates
the estimator

ψ̂ r (G) = n−2
n∑

i,j=1

D⊗rLG(Xi − Xj ).
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The mean square error of the estimator ψ̂ r (G) is defined as

MSE(G) = E
{‖ψ̂ r (G) − ψ r‖2}.

We prefer to measure the error using this real function, in contrast with some vector-
valued (or even matrix-valued) definitions of error, because our aim is to approach
the notion of distance between the estimator and the parameter, in order to select
the best possible G. However, it can be easily seen that this function can be decom-
posed as MSE(G) = B2(G) + V(G), where B(G) = ‖Eψ̂ r (G) − ψ r‖ is the norm of
the bias vector, and V(G) = tr Var ψ̂ r (G) is the trace of the variance matrix of the
estimator.

The asymptotic approximation to this MSE function is given in the next theorem.

Theorem 1 Suppose that:

(L) L is a symmetric d-variate density such that
∫

Rd zzT L(z)dz = m2(L)Id

with each element in D⊗jL bounded, continuous, and square integrable for
0 ≤ j ≤ r .

(D) All the elements in D⊗j f are bounded, continuous, and square integrable for
0 ≤ j ≤ r + 2.

(G) The bandwidth sequence G = Gn is such that vec G → 0.

Then, the MSE function is asymptotically equivalent to AMSE(G) = AB2(G) +
AV(G) with

AB2(G) =
∥∥∥∥n−1|G|−1/2(G−1/2)⊗r

D⊗rL(0) + m2(L)

2

(
vecT G ⊗ Idr

)
ψ r+2

∥∥∥∥
2

,

AV(G) = 4n−1 tr Var D⊗rf (X) + 2n−2ψ0|G|−1/2 tr
((

G−1)⊗rR
(
D⊗rL

))
.

The function AB2(G) appearing in the previous display consists of the square
norm of the sum of two vectors. Similarly to the situation in the univariate case
(see Jones and Sheather 1991), the square norm of the first of these two vectors is
easily seen to be of order O(n−2|G|−1 trr G−1), while the term depending on G in
AV(G) is of smaller order, namely O(n−2|G|−1/2 trr G−1). Therefore, the pilot band-
width matrix G can be chosen on the basis of bias alone. Hence, we will consider the
(asymptotically) optimal pilot bandwidth to be GAMSE,r = argminG∈F AB2(G). The
next theorem describes the order of this pilot bandwidth and its performance in terms
of MSE.

Theorem 2 Assume hypotheses (L), (F), and (G) from Theorem 1. Then, the pilot
bandwidth matrix GAMSE,r is of order n−2/(r+d+2). For d ≥ 2, the MSE obtained
when this bandwidth matrix is used in ψ̂ r (G) is of order n−min{r+d+2,4}/(r+d+2).

It is to be remarked that the results of Theorems 1 and 2 coincide with those
given by Jones and Sheather (1991) in the univariate case. The only exception to
this generalization is the MSE rate in Theorem 2. Whereas, for d = 1, this rate is
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O(n−min{r+3,5}/(r+3)), we see that, for d ≥ 2, the rate is slightly slower than ex-
pected. This phenomenon is due to the fact that in the univariate case the optimal
pilot bandwidth annihilates the dominant term of the squared bias, while, for d ≥ 2,
only square bias minimization is possible in general.

3.3 Exact normal calculations

Of course, the estimator ψ̂ r (G) would be of little use in practice if we could not
provide an explicit expression for it. To seek for that goal, we first notice that, for an
arbitrary kernel L, it is not hard to show that

D⊗rLG(x) = (
G−1/2)⊗r(

D⊗rL
)

G(x) = |G|−1/2(G−1/2)⊗r
D⊗rL

(
G−1/2x

)
, (6)

so that we can easily compute our estimator if we just know an explicit form for the
vector function D⊗rL.

From now on we are going to use Gaussian kernels; that is, we set K = L = φ,
where φ(x) = (2π)−d/2 exp(− 1

2xT x) for x ∈ R
d . Then, we can take advantage

of the results in the excellent paper by Holmquist (1996a) to write D⊗rφ(x) =
(−1)rφ(x)Hr (x), where Hr (x) denotes the r th vector Hermite polynomial, given
explicitly by

Hr (x) =
[r/2]∑

j=0

(−1)j OF(2j)

(
r

2j

)
Sd,r

(
x⊗(r−2j) ⊗ (vec Id)⊗j

)
.

Here, [a] denotes the integer part of a real number a, and, for an even number m,
OF(m) = (m − 1)(m − 3) · · ·3 · 1 denotes its odd factorial, and Sd,r ∈ Mdr×dr

stands for the d-variate symmetrizer matrix of order r , considered for the first time in
Holmquist (1985) and studied in recent papers as Schott (2003) (under the name of
Kronecker product permutation matrix) and Meijer (2005) (where it is called r-way
symmetrization matrix). Essentially, this matrix is defined by the property that, for
arbitrary vectors v1, . . . ,vr ∈ R

d ,

Sd,r

(
r⊗

i=1

vi

)
= 1

r!
∑

σ

(
r⊗

i=1

vσ(i)

)
,

where the sum is extended over all possible permutations σ of r elements. Explicit
formulas for this symmetrizer matrix can be found in Holmquist (1996a), Schott
(2003), and Meijer (2005).

As it happens for the univariate case, if we are to describe a multistage plug-in
method for choosing the bandwidth matrix (see Sect. 4.1 below), at the initial stage,
a normal reference estimate of ψ r for some even r is needed; see Wand and Jones
(1995, pp. 72–74). This means that it is necessary to calculate ψNR

r , the vector ψ r in
the case where f = φ� . We show in the appendix that such a vector can be written as

ψNR
r = (−1)r/2r!

2r+d(r/2)!πd/2
|�|−1/2Sd,r

(
vec�−1)⊗(r/2)

. (7)
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After some algebraic manipulation, this formula in fact coincides with the one pro-
vided by Wand and Jones (1995, (3.7)), for the univariate case.

Moreover, for f = φ� and L = φ, it is possible to prove (see Appendix) that the
optimal pilot bandwidth matrix admits the explicit expression

GNR
AMSE,r =

(
2

r + d

)2/(r+d+2)

2�n−2/(r+d+2). (8)

This pilot bandwidth coincides with the corresponding one in the normal case for the
method of Jones and Sheather (1991) for d = 1.

4 A new multistage plug-in bandwidth selector

Here we will use the results of the previous section to propose a new multistage plug-
in method for selecting the bandwidth matrix. This new method improves the existing
ones in the sense that the choice of the pilot bandwidth is made with no restrictions,
over the whole class of symmetric positive definite matrices. In this sense, our method
is a generalization of the method by Sheather and Jones (1991) to the multivariate
case.

4.1 The method

All the plug-in methods are based on selecting the bandwidth matrix to numerically
minimize PI(H), the AMISE formula with R(D⊗2f ) replaced by a suitable estimator

̂R(D⊗2f ). As vec R(D⊗2f ) = ψ4, we propose to estimate R(D⊗2f ) using an �-stage
estimation method for ψ4, which can be described as follows:

1. Compute ψ̂
NR
4+2�, the value of ψNR

4+2� with � replaced by S, the covariance matrix
of the data. Plug this estimate into the formula of AB2(G) corresponding to r =
2 + 2� and numerically minimize to obtain Ĝ2+2�, an estimate of GAMSE,2+2�.

2. For j = 2 + 2�,2�, . . . ,6:
(a) Use Ĝj to compute ψ̂j (Ĝj ).

(b) Plug ψ̂j (Ĝj ) in the formula of AB2(G) corresponding to r = j − 2 and nu-

merically minimize to obtain Ĝj−2, an estimate of GAMSE,j−2.
3. Employ Ĝ4 to compute ψ̂4,� = ψ̂4(Ĝ4).

Finally, using the Gaussian kernel, the proposed �-stage plug-in bandwidth selector
is

ĤPI,� = argmin
H∈F

{
n−1|H|−1/2(4π)−d/2 + 1

4

(
vecT H

)⊗2
ψ̂4,�

}
.

Based on the recommendations made for the univariate case, we will mainly consider
here the two-stage plug-in selector, ĤPI = ĤPI,2.
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4.2 Asymptotics

Next, we provide the relative rate of convergence of our selector ĤPI to the asymptot-
ically optimal HAMISE. As in Duong and Hazelton (2005a), this rate may be defined
to be n−α if vec(ĤPI − HAMISE) = OP (Jdn−α)vec HAMISE, where Jd denotes the
d × d matrix of ones, and the OP notation is meant to be applied element-wise.

Theorem 3 Assume hypotheses (L) and (F) from Theorem 1 for r = 4. Then, for
d ≥ 2, the relative rate of convergence of ĤPI to HAMISE is n−2/(d+6).

The relative rate obtained in the previous result is the same as for the SAMSE
plug-in selector of Duong and Hazelton (2003), which is slightly slower than the rate
n−4/(d+12) attained by the full plug-in selector of Wand and Jones (1994). In this
sense, we think that this slower rate reflects the price to be paid for being sure that
the estimator of R(D⊗2f ) is positive definite.

In fact, the reason why the rate of the element-wise estimator of R(D⊗2f ) cannot
be recovered is that, as stated in Sect. 3.2, using a single pilot bandwidth G, for d ≥ 2,
only square bias minimization is possible in general, in contrast to the univariate case,
where the optimal choice of the pilot bandwidth leads to annihilation of the dominant
part of the bias, and so to better rates.

5 Simulations

In this section, we undertake a numerical simulation study to compare the finite sam-
ple performance of the following selectors:

– The Wand and Jones (1994) plug-in selector with individual pilot selectors para-
meterized by G = g2Id , labeled WJ.

– The Duong and Hazelton (2003) plug-in selector with a single selector parameter-
ized by G = g2Id , labeled DH.

– Our proposed plug-in selector with unconstrained pilot selectors, labeled CD.

We consider samples of size n = 100 and n = 1000 for 500 simulation runs. For each
simulation, we compute the Integrated Squared Error (ISE) between the resulting
kernel density estimate and the target density. All these selectors are implemented in
the R library ks (Duong 2009).

5.1 Bivariate study

The six bivariate target densities are some of those appearing in Chacón (2009) and
cover a wide range of density shapes (we keep here their names and numbers). Their
contour plots are depicted in Fig. 2. Target density #1 is a single normal density, and
so it can be considered a base case. Densities #6, #7, #8, #11, and #12 are multimodal
with varying degrees of intricate structure.

In Figs. 3 and 4 we show the box-plots of the distributions of the ISEs correspond-
ing to each method for each target density and n = 100 and n = 1000, respectively,
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Fig. 2 Contour plots for the 6 target densities

based on the 500 simulation runs. As expected, the differences between the three
plug-in methods become clearer for the larger sample size. Two clear conclusions
can be drawn:

1. For densities #1 and #6 our selector performs as well as the other two. In fact, all
the three selectors have an entirely similar behavior. This is surprising because,
for these densities, the use of pretransformations is highly advisable, leading to a
simpler method, so a priori we expected the new method to be outperformed by
the other two. Nevertheless, although our proposal is more general (because of
the use of an unconstrained pilot), it does not lose power against the other plug-in
methods even if we have a situation where a pilot bandwidth matrix with a single
smoothing parameter is appropriate.

2. However, if the density is such that the single-parameter parameterization of the
pilot bandwidth matrix is not suitable for the sphered data, then the plug-in selector
with unconstrained pilot bandwidth clearly outperforms the other two methods.
This occurs for densities #7, #8, #11, and #12.

5.2 Multivariate study

In addition to the bivariate target densities, we want to test the new plug-in method
for densities in higher dimensions. To this end, we will check the performance of the
selectors DH and CD at the time of estimating a density presenting features similar
to those of density #7 in the previous section. We do not include here the method
by Wand and Jones (1994) because the really huge number of density functional
estimations needed for its computation in higher dimensions makes this method not
very manageable in practice.
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Fig. 3 Box-plots for the ISEs of the plug-in methods WJ, DH, and CD (from left to right) and n = 100

Fig. 4 Box-plots for the ISEs of the plug-in methods WJ, DH, and CD (from left to right) and n = 1000

Precisely, we want our target density to have every bivariate projection consisting
of a separated bimodal density. For instance, such a density may be constructed as
follows: for every i = 2,3, . . . , d , consider Ri , the 45-degree rotation matrix in the
plane of R

d defined by the coordinates x1 and xi . Multiply these matrices to get
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Fig. 5 Box-plots for the ISEs of the plug-in methods DH and CD for d = 2,3,4,5

R = RdRd−1 · · ·R2. Then, the multivariate density that we will aim to estimate is an
equal mixture of two d-variate normal densities having means μ1 = R(d,0, . . . ,0)T

and μ2 = −μ1 and common variance matrix �1 = �2 = R�RT , where � ∈ Md×d

is the diagonal matrix with diagonal given by (4−(d−1),4−(d−2), . . . ,4−1,1).
We show in Fig. 5 the ISE box-plots for the estimation of such a density using the

two methods with the dimension ranging from d = 2 to d = 5. In all cases the sample
size is n = 100. Although we must observe that, for d ≥ 3, the new method is indeed
more variable than the DH method, the box-plots clearly suggest that even so it still
has a better performance, at least in terms of ISE.

6 Concluding remarks

By generalizing the pilot bandwidth selection stages for a plug-in selector, we have
developed the first multivariate bandwidth selector which is unconstrained at all lev-
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els of bandwidth selection. The mathematical framework for these unconstrained se-
lectors involves a subtle yet important re-definition of the usual integrated density
derivatives. These redefinitions allowed us to determine the asymptotic optimality
properties of these unconstrained selectors.

For their finite sample behavior, we conducted simulation experiments on a range
of bivariate densities. The unconstrained pilot selector performs at least as well as the
constrained pilot selectors for those densities where the constrained parameterization
is appropriate. For those densities whose structure is not appropriate for constrained
selectors, the unconstrained selector performs markedly better. This latter conclusion
is also verified in higher-dimensional simulations, where the advantage of the new
unconstrained selector becomes even more evident. The trade-off for this increased
flexibility is the increased computational load. For bivariate data, this is a small in-
crease, though as the dimension increases, due to large symmetrizer matrices required
to compute matrix derivatives, the load becomes more onerous.

We concentrate on plug-in selectors since they are a widely used class of band-
width selectors whose performance results from the optimal tuning of pilot se-
lectors. Unbiased cross validation selectors (Rudemo 1982; Bowman 1984) and
biased cross validation selectors (Scott and Terrell 1987; Sain et al. 1994) do
not use pilot selectors and consequently typically exhibit lower levels of perfor-
mance compared to plug-in selectors. Smoothed cross validation (Hall et al. 1992;
Duong and Hazelton 2003) rectifies this deficit in performance. In common with
plug-in selectors, multivariate smoothed cross validation selectors use pilot selectors
to tune the final bandwidth selectors. Future research would be to develop analo-
gous unconstrained pilot selectors for smoothed cross validation and a comprehensive
comparison of the different cross validation selectors with our unconstrained plug-in
selectors.

Looking further afield, the asymptotic analyses of the unconstrained pilot selectors
can be extended to derive optimal bandwidth selectors for kernel estimators of higher-
order density derivatives. There is interest in especially the first (gradient) and second
(Hessian) derivatives, since they characterize important information about the den-
sity function which is not immediately available from only the density itself. These
characterizations are important in applications such as bump hunting and feature sig-
nificance.
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Appendix: Proofs

Proof of Theorem 1

Using the bias-variance decomposition of the MSE, we just need to provide an as-
ymptotic expansion for each of these two terms. This is done in the next two lemmas.
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Lemma 1 (Bias) Assume hypotheses (L), (F), and (G) from Theorem 1. Then,

B(G) =
∥∥∥∥n−1|G|−1/2(G−1/2)⊗r

D⊗rL(0) + m2(L)

2

(
vecT G ⊗ Idr

)
ψ r+2

+ [
O

(
n−1) + o(tr G)

]
1dr

∥∥∥∥,

where 1dr denotes the vector in R
dr

with all elements equal to 1.

Proof We can write

Eψ̂ r (G) = n−1D⊗rLG(0) + (
1 − n−1)

E
[(

D⊗rLG
)
(X1 − X2)

]
.

The first term in the right-hand side of the previous formula can be expanded us-
ing (6). For the expected value, using hypotheses (L) and (F), and standard tech-
niques, it is not difficult to see that

E
[(

D⊗rLG
)
(X1 − X2)

]

=
∫

R2d

(
D⊗rLG

)
(x − y)f (x)f (y) dx dy

=
∫

R2d

LG(x − y)f (x)D⊗rf (y) dx dy

=
∫

R2d

L(z)f
(
y + G1/2z

)
D⊗rf (y) dy dz

=
∫

Rd

D⊗rf (y)f (y) dy +
∫

R2d

L(z)zT G1/2Df (y)D⊗rf (y) dy dz

+ 1

2

∫

R2d

L(z)
(
zT G1/2)⊗2

D⊗2f (y)D⊗rf (y) dy dz + o(tr G)1dr

= ψ r + m2(L)

2

∫

Rd

(
vecT Id

)(
G1/2)⊗2

D⊗2f (y)D⊗rf (y) dy + o(tr G)1dr

= ψ r + m2(L)

2

{∫

Rd

D⊗rf (y)D⊗2f (y)T dy

}
vec G + o(tr G)1dr

= ψ r + m2(L)

2

(
vecT G ⊗ Idr

)
vec

∫

Rd

D⊗rf (y)D⊗2f (y)T dy + o(tr G)1dr

= ψ r + m2(L)

2

(
vecT G ⊗ Idr

)
vecψ r+2 + o(tr G)1dr ,

where, for the last two equalities, we have used that Av = vec Av = (vT ⊗ Ip)vec A
for a matrix A ∈ Mp×q and a vector v ∈ R

q , and the fact that the usual properties
of the Kronecker product and an element-wise application of the integral formula in



392 J.E. Chacón, T. Duong

Wand and Jones (1995, p. 111), lead to

vec
∫

Rd

D⊗rf (y)D⊗2f (y)T dy =
∫

Rd

D⊗2f (y) ⊗ D⊗rf (y) dy

=
∫

Rd

D⊗(r+2)f (y)f (y) dy.

This yields the proof. �

Lemma 2 (Variance) Assume hypotheses (L), (F), and (G) from Theorem 1. Then,

V(G) = 4n−1
{∫

Rd

D⊗rf (x)T D⊗rf (x)f (x) dx − ‖ψr‖2
}

+ 2n−2ψ0|G|−1/2 tr
((

G−1)⊗rR
(
D⊗rL

))

+ o
(
n−1) + o

(
n−2|G|−1/2 tr−r G

)
.

Proof The dominant part of the trace of the covariance matrix of ψ̂ r (G) is given by
4n−1(ξ1 − ξ0) + 2n−2ξ2, where

ξ1 = tr E
[
D⊗rLG(X1 − X2)D

⊗rLG(X1 − X3)
T
]
,

ξ2 = tr E
[
D⊗rLG(X1 − X2)D

⊗rLG(X1 − X2)
T
]
,

ξ0 = tr E
[
D⊗rLG(X1 − X2)

]
E

[
D⊗rLG(X1 − X2)

]T
.

The asymptotic expansion for ξ0 follows immediately from the calculations in the
proof of the previous lemma. We have

ξ0 = tr
(
ψ rψ

T
r

) + O(tr G) = ‖ψr‖2 + O(tr G).

For ξ1, arguing as in Wand and Jones (1995, p. 69), we have

ξ1 = tr
∫

R3d

D⊗rLG(x − y)D⊗rLG(x − z)T f (x)f (y)f (z) dx dy dz

= tr
∫

R3d

L(u)L(v)f (x)D⊗rf
(
x − G1/2u

)
D⊗rf

(
x − G1/2v

)T
dudv dx

= tr
∫

Rd

D⊗rf (x)D⊗rf (x)T f (x) dx + O(tr G).

Therefore, ξ1 = ∫
Rd D⊗rf (x)T D⊗rf (x)f (x) dx + O(tr G). Finally, for ξ2, we have

ξ2 = tr
∫

R2d

D⊗rLG(x − y)D⊗rLG(x − y)T f (x)f (y) dx dy

= tr

[(
G−1/2)⊗r

{∫

R2d

(
D⊗rL

)
G(x − y)

(
D⊗rL

)
G(x − y)T f (x)f (y) dx dy

}
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× (
G−1/2)⊗r

]

= |G|−1/2 tr

[(
G−1)⊗r

∫

R2d

D⊗rL(z)D⊗rL(z)T f
(
y + G1/2z

)
f (y) dy dz

]

= ψ0|G|−1/2 tr
((

G−1)⊗rR
(
D⊗rL

)) + O
(|G|−1/2 tr

[(
G−1)⊗rG

])
,

and the proof is complete. �

Proof of Theorem 2

In view of Theorem 1, let AB2(G) = α1(G) + α2(G) + α3(G), where

α1(G) = n−2|G|−1 tr
[
�r�

T
r

(
G−1)⊗r]

α2(G) = n−1m2(L)|G|−1/2 tr
[
ψ r+2�

T
r

(
G−1/2)⊗r(vecT G ⊗ Idr

)]

α3(G) = m2(L)2

4
tr
[(

ψ r+2ψ
T
r+2

)(
vec G vecT G ⊗ Idr

)]

with �r = D⊗rL(0). We will find the derivative of AB2 and the order of G which
attains a zero derivative.

For α1, the differential is

dα1(G) = −α1(G)
(
vecT G−1)d vec G + n−2|G|−1d tr

[
�r�

T
r

(
G−1)⊗r]

since d|G|−1 = −|G|−2d|G| = −|G|−2|G| tr(G−1dG) = −|G|−1(vecT G−1) ×
(d vec G). The trace can be expressed as vecT (�r�

T
r ) d vec((G−1)⊗r ). We have

d vec G−1 = vec(dG−1) = −vec(G−1(dG)G−1) = −(G−1 ⊗ G−1) d vec G, which
implies that

d
(
vec

(
G−1)⊗r) = d

(
vec

(
G⊗r

)−1) = −(
G−1 ⊗ G−1)⊗r

d vec
(
G⊗r

)

= −(
G−1)⊗2r

d vec
(
G⊗r

)
.

This leaves us to find d vec(G⊗r ):

d vec
(
G⊗r

) =
r∑

i=1

vec
(
G⊗(i−1) ⊗ dG ⊗ G⊗(r−i)

)

=
r∑

i=1

vec
[
Kdi ,dr−i

(
G⊗(r−i) ⊗ G⊗(i−1) ⊗ dG

)
Kdr−i ,di

]

=
r∑

i=1

K⊗2
di ,dr−i vec

(
G⊗(r−1) ⊗ dG

)

=
r∑

i=1

K⊗2
di ,dr−i

[{
(Idr−1 ⊗ Kd,dr−1)

(
vec G⊗(r−1) ⊗ Id

)} ⊗ Id

]
d vec G,
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where the second line follows from Schott (2005, p. 311) for commuting a 3-fold
Kronecker product, with Km,n the commutation matrix of orders m,n, and the fourth
line follows from Magnus and Neudecker (1999, p. 48). Thus,

dα1(G) = −{
α1(G)

(
vecT G−1) + n−2|G|−1(�T

r ⊗ �T
r

)(
G−1)⊗2r

× �r

[{
(Idr−1 ⊗ Kd,dr−1)

(
vec G⊗(r−1) ⊗ Id

)} ⊗ Id

]}
d vec G, (9)

where �r = ∑r
i=1 K⊗2

di ,dr−i , since vec(abT ) = b ⊗ a for vectors a and b.
For α2, its differential is

dα2(G) = −1

2
α2(G)

(
vecT G−1)d vec G

+ n−1m2(L)|G|−1/2d tr
[
ψ r+2�

T
r

(
G−1/2)⊗r(vecT G ⊗ Idr

)]

since we have d|G|−1/2 = − 1
2 |G|−3/2d|G| = − 1

2 |G|−1/2(vecT G−1)(d vec G). The
trace can be expressed as vecT (�rψ

T
r+2) d vec[(G−1/2)⊗r (vecT G ⊗ Idr )]. Then

d vec
[(

G−1/2)⊗r(vecT G ⊗ Idr

)]

= vec
[(

G−1/2)⊗r(
d vecT G ⊗ Idr

)] + vec
[
d
((

G−1/2)⊗r)(vecT G ⊗ Idr

)]

= (
Idr+2 ⊗ (

G−1/2)⊗r)vec
(
d vecT G ⊗ Idr

) + (vec G ⊗ Id2r ) d vec
((

G−1/2)⊗r)

= (
Idr+2 ⊗ (

G−1/2)⊗r)
(Id2 ⊗ vec Idr ) d vec G

+ (vec G ⊗ Id2r ) d vec
((

G−1/2)⊗r)
,

where the last lines follow from Magnus and Neudecker (1999, p. 48): for B ∈ Mm×n

and b ∈ R
p , vec(bT ⊗ B) = (Ip ⊗ vec B)b. To evaluate d vec((G−1/2)⊗r ), we start

with the identity G−1/2G−1/2 = G−1; then taking differentials and applying the vec
operator, we obtain d vec G−1/2 = −(G1/2 ⊗G+G⊗G1/2)−1 d vec G, which implies
that

d vec
((

G−1/2)⊗r) = d vec
((

G⊗r
)−1/2)

= −[(
G1/2)⊗r ⊗ G⊗r + G⊗r ⊗ (

G1/2)⊗r]−1
d vec

(
G⊗r

)
.

So we have

dα2(G)

=
(

−1

2
α2(G)

(
vecT G−1) + n−1m2(L)|G|−1/2(ψT

r+2 ⊗ �T
r

)

× {[
Id2 ⊗ vec

((
G−1/2)⊗r)] − (vec G ⊗ Id2r )

[(
G1/2)⊗r ⊗ G⊗r

+ G⊗r ⊗ (
G1/2)⊗r]−1

�r

[{
(Idr−1 ⊗ Kd,dr−1)

(
vec G⊗(r−1) ⊗ Id

)} ⊗ Id

]})

× d vec G. (10)
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For α3, the differential is dα3(G) = m2(L)2

4 d tr[(ψ r+2ψ
T
r+2)(vec G vecT G⊗Idr )],

and the trace can be rewritten as vecT (ψ r+2ψ
T
r+2)vec(vec G vecT G ⊗ Idr ). The dif-

ferential of the latter part is

d vec
(
vec G vecT G ⊗ Idr

)

= vec
(
d vec G ⊗ vecT G ⊗ Idr + vec G ⊗ d vecT G ⊗ Idr

)

= vec
(
d vec G ⊗ (

vecT G ⊗ Idr

) + d vecT G ⊗ (vec G ⊗ Idr )
)

= (Kdr+2,d2 ⊗ Idr )
[
Id2 ⊗ vec

(
vecT G ⊗ vec Idr

)]
d vec G

+ [
Id2 ⊗ vec(vec G ⊗ vec Idr )

]
d vec G

from Magnus and Neudecker (1999, p. 48): for B ∈ Mm×n and b ∈ R
p ,

vec(b ⊗ B) = (Knp ⊗ Im)(Ip ⊗ vec B)b. This can be further expanded, to give

d vec
(
vec G vecT G ⊗ Idr

)

= [
(Kdr+2,d2 ⊗ Idr ) + Id2r+4

]
(Id2 ⊗ vec G ⊗ vec Idr )d vec G,

from which we find that

dα3(G) = m(L)2

4

(
ψT

r+2 ⊗ ψT
r+2

)[
(Kdr+2,d2 ⊗ Idr ) + Id2r+4

]

× (Id2 ⊗ vec G ⊗ vec Idr )d vec G. (11)

If we assume that G = O(Jdn−β) for some β > 0, then dα1(G) =
O(nβ(d+r+1)−2)d vec G, dα2(G) = O(nβ(d+r)/2−1)d vec G and dα3(G) =
O(n−β)d vec G. Equating powers of n gives β = 2/(r + d + 2), which means
that the solution to ∂AB2(G)/∂ vec G = 0, GAMSE,r , is of order n−2/(r+d+2).
To complete the proof, AB2(GAMSE,r ) = O(n−4/(r+d+2)) and AV(GAMSE,r ) =
O(n−min{r+d+2,d+4}/(r+d+2)), i.e., MSE(GAMSE,r ) = O(n−min{r+d+2,4}/(r+d+2)).

Proof of the normal reference formulas

Proof of formula (7) Applying Fact C.2.3 in Wand and Jones (1995) to every element
in ψNR

r , we can show that

ψNR
r =

∫

Rd

D⊗rφ�(x)φ�(x) dx = (−1)rD⊗rφ2�(0)

= (−1)r |2�|−1/2[(2�)−1/2]⊗r
D⊗rφ(0)

= 2−(r+d)/2|�|−1/2(�−1/2)⊗r
φ(0)Hr (0)

= (−1)r/2(2π)−d/2OF(r)2−(r+d)/2|�|−1/2(�−1/2)⊗rSd,r (vec Id)⊗(r/2),
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and we are done, as we can interchange (�−1/2)⊗rSd,r = Sd,r (�
−1/2)⊗r by part

(vii) of Theorem 1 in Schott (2003) and obtain

(�−1/2)⊗r (vec Id)⊗(r/2) = [(�−1/2 ⊗ �−1/2)vec Id ]⊗(r/2) = (
vec�−1)⊗(r/2)

,

using aforementioned properties of the Kronecker product. �

The proof of formula (8) is more laborious. The techniques used here are similar
to those needed for the normal calculations included in Chacón et al. (2009) For a d-
variate random vector z with standard normal distribution, denote by μp = E[z⊗p] ∈
R

dp
its pth order vector moment and by νp(A) = E[(zT Az)p] the pth order moment

of the quadratic form zT Az for a symmetric matrix A ∈ Md×d .

Lemma 3 For even r , the following relations hold:

(i) μT
r (�−1)⊗rμr = OF(r)νr/2(�

−2).
(ii) μT

r [vecT Id ⊗ (�−1)⊗r ]μr+2 = (r + d)OF(r)νr/2(�
−2).

Proof (i) According to Holmquist (1996a), it is possible to write

μr = OF(r)Sd,r (vec Id)⊗(r/2). (12)

Therefore, using Theorem 1 in Schott (2003), we have

μT
r

(
�−1)⊗r

μr = OF(r)2(vecT Id

)⊗(r/2)Sd,r

(
�−1)⊗rSd,r (vec Id)⊗(r/2)

= OF(r)2(vecT �−2)⊗(r/2)Sd,r (vec Id)⊗(r/2)

= OF(r)νr/2
(
�−2),

where the last line follows from Theorem 1 in Holmquist (1996b).
(ii) As μr = (−1)r/2Hr (0), applying the recurrence relation in Theorem 7.2 of

Holmquist (1996a), we get μr+2 = (r +1)Sd,r+2(vec Id ⊗μr ). Thus, by comparison
with (12) it follows that Sd,r+2(vec Id ⊗ μr ) = OF(r)Sd,r+2(vec Id)⊗(r/2+1). Then,

μT
r

[
vecT Id ⊗ (

�−1)⊗r]
μr+2

= OF(r + 2)
(
vecT Id ⊗ μT

r

)
Sd,r+2

[
Id2 ⊗ (

�−1)⊗r]
(vec Id)⊗(r/2+1)

= OF(r)OF(r + 2)
[
vecT Id ⊗ (

vecT �−2)⊗(r/2)]Sd,r+2(vec Id)⊗(r/2+1)

= OF(r)E
[(

zT �−2z
)r/2

(zT z)
] = (r + d)OF(r)νr/2

(
�−2),

where the third equality follows from Theorem 5 in Holmquist (1996b), and the
fourth one from Chacón et al. (2009). �

Now we are ready to prove formula (8).
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Proof of formula (8) First, using (7) and (12), it is not hard to show that, in the normal
case,

AB2(G) = (2π)−d
∥∥n−1|G|−1/2(G−1/2)⊗r

μr − 2−(r+d+4)/2|�|−1/2

× [
vecT

(
�−1/2G�−1/2) ⊗ (

�−1/2)⊗r]
μr+2

∥∥2
.

For G = c�, writing v1 = (�−1/2)⊗rμr and v2 = [vecT Id ⊗ (�−1/2)⊗r ]μr+2, the
previous formula reduces to

AB2(c�) = (2π)−d |�|−1
∥∥n−1c−(r+d)/2v1 − 2−(r+d+4)/2cv2

∥∥2

= (2π)−d |�|−1{n−2c−(r+d)vT
1 v1 − 2n−12−(r+d+4)/2c(2−r−d)/2vT

1 v2

+ 2−(r+d+4)c2vT
2 v2

}

= (2π)−d |�|−1c2{n−2c−(r+d+2)vT
1 v1

− 2n−12−(r+d+4)/2c−(r+d+2)/2vT
1 v2 + 2−(r+d+4)vT

2 v2
}
,

and the term inside the braces is quadratic in Θ = c−(r+d+2)/2 with positive co-
efficient n−2vT

1 v1 for Θ2. Therefore, its minimizer is given by Θ0 = 2−(r+d+4)/2 ×
n(vT

1 v2)/(v
T
1 v1). We finish the proof by noting that, according to the previous lemma,

(vT
1 v2)/(v

T
1 v1) = r + d . �

Proof of Theorem 3

The proof of this theorem is straightforward since it relies on previous results from
both previous research and this paper. Reasoning as in Wand and Jones (1994,
pp. 106–107), and making use of Lemma 1 in Duong and Hazelton (2005a), we ob-
tain that the relative rate of convergence of ĤPI to HAMISE equals n−α whenever
MSE(G) is of order n−2α . As Theorem 2 for r = 4 gives MSE(G) = O(n−4/(d+6)),
we are done.
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