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Abstract

Kernel density estimation is an important data smoothing technique. It has been applied

most successfully for univariate data whilst for multivariate data its development and im-

plementation have been relatively limited. The performance of kernel density estimators

depends crucially on the bandwidth selection. Bandwidth selection in the univariate case

involves selecting a scalar parameter which controls the amount of smoothing. In the mul-

tivariate case, the bandwidth matrix controls both the degree and direction of smoothing

so its selection is more difficult. So far most of the research effort has been expended on

automatic, data-driven selectors for univariate data. There is, on the other hand, a rela-

tive paucity of multivariate counterparts. Most of these multivariate bandwidth selectors

are focused on the restricted case of diagonal matrices. In this thesis practical algorithms

are constructed, with supporting theoretical justifications, for unconstrained bandwidth

matrices.

The two main classes of univariate bandwidth selectors are plug-in and cross valida-

tion. These unidimensional selectors are generalised to the multidimensional case. The

univariate framework for theoretically analysing kernel density estimators is extended to

a general multivariate version. This framework has at its core the quantification of the

relative rates of convergence which provide a guide to the asymptotic behaviour of band-

width selectors. Simulation studies and real data analysis are employed to illustrate their

finite sample behaviour. It is found that unconstrained selectors possess good asymptotic

and finite sample properties in a wide range of situations.

Buoyed by this success, two extensions are embarked upon. The first is variable band-

width selection, generalising the above case where the bandwidth is fixed throughout the

sample space. The variation of the bandwidths is controlled by the local properties of

the data. The novel contribution is to use non-parametric clustering to summarise these

local properties, along with unconstrained bandwidth matrices. The second is in kernel

discriminant analysis where unconstrained bandwidth matrices are shown to produce more

accurate discrimination.
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Chapter 1

Kernel density estimation

1.1 Introduction

Data smoothing is an important class of fundamental techniques in statistics which allow

us to take a sample of data and from it construct a continuous estimator. Estimating

probability density functions can be considered the simplest data smoothing situation.

Historically, in order to reduce the computational burden for this estimation, a functional

or parametric form is imposed on the density estimate. This functional form is largely

subjective but imposing it does greatly simplify the problem. All that remains is to

estimate the parameters. These estimated parameters plus the functional form give a

parametric density estimator. The most common parametric estimators are maximum

likelihood estimators, and these are useful in a wide range of situations.

Nonetheless there are still many situations where parametric estimation is not appli-

cable. In these cases, it is appropriate to use non-parametric density estimators. These

do not require a functional form to be imposed on the density estimate. As a trade-off

for their increased flexibility, most non-parametric density estimators are more computa-

tionally intensive and this has restricted their widespread use until the advent of easily

available fast computing power in the late twentieth century. Subsequent to this, there

has been vast body of research conducted on non-parametric density estimators.

As the title of this thesis suggests, we will concentrate on one class of non-parametric

density estimators, namely kernel density estimators. Other types of non-parametric den-

sity estimators include histograms, frequency polygons, spline estimators, orthogonal se-

ries estimators and penalised likelihood estimators. These estimators are discussed in

Silverman (1986), Scott (1992) and Simonoff (1996). We concentrate on kernel density

estimators because they are easy to interpret and to implement. Within their intuitively

and mathematically simple framework, we can more clearly ascertain the key issues, many

of which can be carried over to the other density estimators. Kernel density estimators

are most practicable for low to moderate number of dimensions. Six dimensional data are

1



CHAPTER 1. KERNEL DENSITY ESTIMATION

typically a practical upper limit since at higher dimensions the sparsity of data leads to

unstable estimation, see Scott (1992, Section 7.2).

Kernel density estimation is an important smoothing technique in its own right with

direct applications such as exploratory data analysis and data visualisation. Its useful-

ness is not limited to these direct applications. It can be applied indirectly to other

non-parametric problems, e.g. discriminant analysis, goodness-of-fit testing, hazard rate

estimation, intensity function estimation and regression. Kernel smoothers can also serve

as a testing ground for developing analogous smoothing techniques since ideas from the

former can be easily transferred to latter. See Silverman (1986), Wand & Jones (1995),

Simonoff (1996) and Schimek (2000) for a discussion of related techniques in a united

smoothing framework.

A univariate kernel density estimator, for a random sample X1, X2, . . . Xn, drawn from

a common (smooth) density f, is

f̂(x;h) = n−1
n∑

i=1

Kh(x−Xi). (1.1)

Here K is the unscaled kernel function which is typically is a symmetric probability den-

sity function with finite variance. Kh is the scaled kernel function and h is the (fixed)

bandwidth which is a positive, non-random number. The scaled and unscaled kernels are

related by Kh(x) = h−1K(h−1x). At each data point, we place a scaled kernel function of

probability mass n−1. These are then summed together to give a composite curve. This

composite curve is the kernel density estimate as illustrated in Figure 1.1.

Figure 1.1: Univariate kernel density estimate: solid line – kernel density estimate, dashed
lines – individual kernels

The data points are X1 = −1, X2 = −0.8, X3 = −0.6, X4 = 0.5, X5 = 1.2, marked

2



1.1. INTRODUCTION

on the x-axis. The kernel K is the standard normal pdf (the dotted lines are the scaled

kernels). We see that the kernel density estimate is bimodal, reflecting the structure of the

data. The bandwidth used is h = 0.3517, chosen subjectively here. In common with all

smoothing problems, the most important factor is to determine the amount of smoothing:

for kernel density estimators the amount of smoothing is controlled by the bandwidth.

The crucial task is thus to find an automatic, data-driven bandwidth selector.

The general form of the d-dimensional multivariate kernel density estimator, for a random

sample X1,X2, . . . ,Xn drawn from a common (smooth) density f, is

f̂(x;H) = n−1
n∑

i=1

KH(x−Xi) (1.2)

where x = (x1, x2, . . . , xd)T and Xi = (Xi1, Xi2, . . . , Xid)T , i = 1, 2, . . . , n. Here K is the

unscaled kernel, KH is the scaled kernel and H is the d × d (fixed) bandwidth matrix,

which is non-random, symmetric and positive definite. The scaled and unscaled kernels

are related by KH(x) = |H|−1/2K(H−1/2x). This formulation is a little different to the

univariate case since the 1 × 1 bandwidth matrix is H = h2 so we are dealing with

‘squared bandwidths’ here. Though the basic principle, of placing a scaled kernel of mass

n−1 at each data point and then aggregating to form the density estimate, carries over

unchanged from the univariate case, as illustrated in Figure 1.2: we have a sample data set

X1 = (7, 3),X2 = (2, 4),X3 = (4, 4),X4 = (5, 2) and X5 = (5.5, 6.5) with a bandwidth

matrix H =
[

1 0.7
0.7 1

]
. On the left are the individual scaled kernels, centred at each data

point and on the right is the density estimate.

Figure 1.2: Bivariate kernel density estimate: solid line – kernel density estimate, dashed
lines – individual kernels

3



CHAPTER 1. KERNEL DENSITY ESTIMATION

We will restrict our attention to kernel functions K that are spherically symmetric

probability density functions (i.e. second order kernels). By using second order kernels,

the resulting density estimate f̂ is also a probability density function. Moreover, we will

mostly use normal kernels throughout this thesis for two reasons: they lead to smooth

density estimates and they simplify the mathematical analysis.

We will develop theory for the central problem of bandwidth selection for the general

multivariate case. This will form the bulk of the thesis. However we will focus on the

important bivariate case when looking at particular examples of putting this theory into

practice for two reasons. First, bivariate kernel density estimators, like their univariate

counterparts, can be easily visualised on a 2-dimensional page through contour/slice plots

and perspective/wire-frame plots. Second, they have important features (e.g. kernel

orientation as determined by the bandwidth matrix) which their univariate counterparts

lack but which can be easily extended to higher dimensions.

1.2 Error criteria

The bandwidth selector plays a central role in determining the performance of kernel den-

sity estimators. Thus we wish to select bandwidths which give the optimal performance.

Performance is measured by the closeness of a kernel density estimate to its target den-

sity. There are many possible error criteria from which to choose. A common global error

criterion is the Integrated Squared Error or ISE. This is the integrated squared distance

between an estimate f̂ and the target density f :

ISE f̂(·;H) =
∫

Rd

[f̂(x;H)− f(x)]2 dx. (1.3)

The ISE is a random variable and is difficult to predict. An alternative is the Mean

Integrated Squared Error or MISE, defined as

MISE(H) ≡ MISE f̂(·;H) = E ISE f̂(·;H) = E
∫

Rd

[f̂(x;H)− f(x)]2 dx. (1.4)

See Jones (1991),Turlach (1993), Grund et al. (1994) for a discussion on the relative merits

of using the ISE and MISE. Other authors have used other error criteria. See Devroye &

Györfi (1985) for a thorough treatment of the Mean Integrated Absolute Error (MIAE)

which replaces the square in the MISE with the absolute value:

MIAE f̂(·;H) = E
∫

Rd

|f̂(x;H)− f(x)| dx.

Marron & Tsybakov (1995) deal with error criteria that are more akin to visual interpre-

tations of closeness.

4



1.2. ERROR CRITERIA

From these criteria, we choose the MISE as it is the most mathematically tractable

criterion and is the most widely used in practice. We thus wish to find

HMISE = argmin
H∈H

MISE f̂(·;H)

where H is the space of symmetric, positive definite d×d matrices. As MISE does not have

a closed form, except if f is a normal mixture and K is the normal kernel (see Wand &

Jones (1995)), finding HMISE is in general extremely difficult. The usual approach is to find

a tractable approximation to the MISE. The first step in determining this approximation

is to rewrite the MISE. Under some mild regularity conditions, which will assume to hold

throughout the thesis, we are able to exchange the integral and expectation operators:

MISE f̂(·;H) =
∫

Rd
MSE f̂(x;H) dx

=
∫

Rd
Var f̂(x;H) dx+

∫
Rd

Bias2 f̂(x;H) dx.

As the expected value of the kernel density estimate is

E f̂(x;H) = EKH(x−X) =
∫

Rd
KH(x− y)f(y) dy = (KH ∗ f)(x)

(where * is the convolution operator) then the bias is

Bias f̂(x;H) = (KH ∗ f)(x)− f(x).

The variance is

Var f̂(x;H) = n−1[(K2
H ∗ f)(x)− (KH ∗ f)(x)2].

Combining the squared bias and the variance we have

MISE f̂(·;H)

= n−1

∫
Rd

[(K2
H ∗ f)(x)− (KH ∗ f)(x)2] dx−

∫
Rd

[(KH ∗ f)(x)− f(x)]2 dx

= n−1R(K)|H|−1/2 + (1− n−1)
∫

Rd
(KH ∗ f)(x)2 dx− 2

∫
Rd

(KH ∗ f)(x)f(x) dx

+R(f)

where R(g) =
∫

Rd g(x)2 dx for any square integrable function g. From this form of the

MISE, we proceed to an asymptotic approximation of the MISE, known as the AMISE.

As the AMISE is a tractable expression we can find HAMISE, the minimiser of AMISE,

more easily than HMISE.

We now introduce some more notation that will assist us in determining an expression

for AMISE. The vec (vector) operator takes the elements of a d × d matrix and stacks

them column-wise into a vector. The vech (vector half) operator takes the elements of the

5



CHAPTER 1. KERNEL DENSITY ESTIMATION

lower triangular half of a d × d matrix, and stacks them column-wise into a vector. For

example

vec
[
a b
c d

]
=


a
c
b
d

 , vech
[
a b
c d

]
=

ac
d

 .
Hence a vec’ed matrix is length d2 and a vech’ed one is of length 1

2d(d+ 1). The vec and

vech of a symmetric matrix A are related in the following ways:

vecA = Dd vechA

DT
d vecA = 2A− dg A

where Dd is the duplication matrix of order d and dg A is matrix A with all of its non-

diagonal elements set to zero. For example

D2 =


1 0 0
0 1 0
0 1 0
0 0 1

 ,dg
[
a b
c d

]
=
[
a 0
0 d

]
.

The following form of the AMISE is derived by Wand & Jones (1995, pp. 94 – 101):

AMISE(H) ≡ AMISE f̂(·;H) = n−1R(K)|H|−1/2 + 1
4µ2(K)2

∫
Rd

tr2(HD2f(x)) dx

where
∫

Rd xx
TK(x) dx = µ2(K)Id with µ2(K) < ∞ and Id is the d × d identity matrix;

and D2f(x) is the Hessian matrix of f. The first term in the AMISE is the asymptotic

integrated variance and the second term is the asymptotic integrated squared bias. The

rate of convergence of the AMISE to the MISE is given by

MISE f̂(·;H) = AMISE f̂(·;H) + o(n−1|H|−1/2 + ‖vechH‖2)

provided that all entries in D2f(x) are piecewise continuous and square integrable, and

all entries of H → 0 and n−1|H|−1/2 → 0, as n →∞. An alternative form of the AMISE

is

AMISE f̂(·;H) = n−1R(K)|H|−1/2 + 1
4µ2(K)2(vechT H)Ψ4(vechH) (1.5)

where Ψ4 is the 1
2d(d+ 1)× 1

2d(d+ 1) matrix given by

Ψ4 =
∫

Rd

vech(2D2f(x)− dgD2f(x)) vechT (2D2f(x)− dgD2f(x)) dx. (1.6)

(Note that the subscript 4 on Ψ indicates the order of the derivatives involved.) This

form of the AMISE arises as
∫

Rd tr2(HD2f(x)) dx = (vechT H)Ψ4(vechH) under the

above regularity conditions.

6



1.2. ERROR CRITERIA

We can explicitly state an expression for Ψ4 in terms of its individual elements using

the following notation. Let r = (r1, r2, . . . , rd) where the r1, r2, . . . , rd are non-negative

integers. Let |r| = r1 + r2 + · · ·+ rd then the r-th partial derivative of f can be written as

f (r)(x) =
∂|r|

∂r1
x1 . . . ∂

rd
xd

f(x).

Define the integrated density derivative functional as

ψr =
∫

Rd

f (r)(x)f(x) dx. (1.7)

This then implies that each element in Ψ4 is a ψr functional.

To be more explicit, we look more closely at the vech operator and its inverse. Suppose

we have a d×d symmetric matrix A then the (i, j)-th element of A, [A]ij , i, j = 1, 2, . . . , d

is mapped to the the k-th element of vechA, [vechA]k, k = 1, 2, . . . , d′ where d′ = 1
2d(d+1)

and

k = (j − 1)d− 1
2j(j − 1) + i.

Conversely suppose that we have a vector vechA of length d′ then [vechA]k is mapped to

[A]ij where

j : (j − 1)d− 1
2(j − 1)(j − 2) < k ≤ jd− 1

2j(j − 1)

i = k − (j − 1)d+ 1
2j(j − 1).

We have that [Ψ4]k,k′ = [vechD2f(x)]k[vechD2f(x)]k′ , k, k′ = 1, 2, . . . , d′. Since we have

[D2f(x)]ij = f (ei+ej)(x) then [Ψ4]k,k′ contains the functional ψei+ei′+ej+ej′ , where ei is

a d-dimensional elementary vector i.e. it has 1 as its i-th element and 0 elsewhere. The

coefficient of this functional is given in

[Ψ4]k,k′ = [2− 1{i = j}][2− 1{i′ = j′}]ψei+ei′+ej+ej′

where 1{·} is the indicator function. Following the above algorithm, for d = 2,

Ψ4 =

 ψ40 2ψ31 ψ22

2ψ31 4ψ22 2ψ13

ψ22 2ψ13 ψ04

 .
It is important to note that all we have done so far is to write down various alternative

expressions for MISE and AMISE. We must remember that they remain unknown in

practice as they depend on the unknown density f. The next step is to find an estimate

of (A)MISE, ̂(A)MISE, from the data and then find its minimiser i.e.

Ĥ = argmin
H∈H

̂(A)MISE

which is known as a bandwidth selector. This serves as our surrogate for H(A)MISE. In the

next section, we review the various methods that have been used so far in the search for

data-driven bandwidth selectors based on various estimators of (A)MISE.
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CHAPTER 1. KERNEL DENSITY ESTIMATION

1.3 Bandwidth selectors

1.3.1 Univariate bandwidth selectors

Since Rosenblatt (1956) and Parzen (1962) introduced univariate kernel density estimators,

there has been a vast body of research conducted on them and their bandwidth selectors.

See Silverman (1986), Scott (1992), Wand & Jones (1995), Simonoff (1996) and Bowman &

Azzalini (1997) for a summary. Wand & Jones (1995, Chapter 3) contains a comprehensive

history of univariate bandwidth selectors with an extended bibliography. These authors

provide references to all of the original developments of the major types of bandwidth

selectors, including most importantly plug-in and cross validation selectors. What is given

below is a summarised version, highlighting the main ideas. The reader interested in the

more detailed account should peruse Wand & Jones (1995).

Ideas for plug-in selection have been around in many different guises since the 1970s

but they all share the basic idea of using the AMISE

AMISE f̂(·;h) = n−1h−1R(K) + 1
4h

4µ2(K)2ψ4

as a starting point. Here we require that h → 0 and n−1h−1 → 0 as n → ∞ and

that f ′′ is piecewise continuous and square integrable. The critical step is to estimate

ψ4 =
∫∞
−∞ f (4)(x)f(x) dx. We then plug this estimate ψ̂4 in the previous equation to

obtain the plug-in estimate of the AMISE:

PI(h) = n−1h−1R(K) + 1
4h

4µ2(K)2ψ̂4.

This advantage of this plug-in approach is that we have a closed form solution for the

selector that minimises this PI:

ĥPI =

[
R(K)

µ2(K)2ψ̂4n

]1/5

.

The most commonly used method of estimating ψ4 was introduced by Sheather & Jones

(1991). These authors observe that if X has density f then ψ4 = E f (4)(X) and a ‘natural

estimator’ would be the sample mean of the fourth derivative of a pilot kernel density

estimate of f

f̂P (x; g) = n−1
n∑

j=1

Lg(x−Xj)

where L is the pilot kernel and g is the pilot bandwidth. So

ψ̂4(g) = n−1
n∑

i=1

f̂
(4)
P (Xi; g) = n−2

n∑
i=1

n∑
j=1

L(4)
g (Xi −Xj).

Sheather & Jones (1991) also provide an algorithm for selecting the most appropriate pilot

bandwidth g.
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1.3. BANDWIDTH SELECTORS

Cross validation methods make use of leave-one-out estimators of the form

f̂−i(Xi;h) = (n− 1)−1
n∑

j=1
j 6=i

Kh(Xi −Xj).

Here we leave out the i-th data value, compute a kernel density estimate on the rest of

the data and then evaluate it at the missing data value. This way we check against or

cross validate the estimate of f . If our estimate is appropriate then f̂−i(Xi;h) should be

non-zero since we already have a data point at Xi.

Least squares cross validation (LSCV) was developed independently by Rudemo (1982)

and Bowman (1984). It attempts to find the bandwidth which minimises

LSCV(h) =
∫ ∞

−∞
f̂(x;h)2 dx− 2n−1

n∑
i=1

f̂−i(Xi;h).

It can be shown that E LSCV(h) = MISE f̂(·;h) − R(f). Due to its unbiasedness, the

LSCV selector is sometimes called the unbiased cross validation (UCV) selector. This

unbiasedness, along with its simple interpretation and implementation has assured its

widespread use since its introduction. Also contributing to its widespread use is that it

does not rely on asymptotic expansions unlike the plug-in methods above and the biased

and smoothed cross validation methods below.

Biased cross validation (BCV) was introduced by Scott & Terrell (1987). It is similar

to plug-in selectors in that it attempts to find the bandwidth which minimises an estimate

of the AMISE. The essential differences are in the estimator of ψ4 and in the selection of

the pilot bandwidth g. Here we set g = h and so

BCV(h) = n−1h−1R(K) + 1
4h

4µ2(K)2ψ̌4(h)

where

ψ̌4(h) = n−1(n− 1)−1
n∑

i=1

n∑
j=1
j 6=i

(K ′′
h ∗K ′′

h)(Xi −Xj).

The estimator ψ̌4(h) is obtained by replacing f with f̂−i(·;h) and taking the sample mean,

noting that ψ4 =
∫∞
−∞ f (4)(x)f(x) dx =

∫∞
−∞ f ′′(x)f ′′(x) dx under the same regularity

conditions on f ′′ for the AMISE expansion.

Smoothed cross validation (SCV), devised by Hall et al. (1992), can be thought of

as a hybrid of estimating the MISE and AMISE. It comprises the asymptotic integrated

variance n−1h−1R(K) and an estimate of the exact (non-asymptotic) integrated squared

bias. An expression for the exact integrated squared bias is
∫∞
−∞[(Kh ∗ f)(x)− f(x)]2 dx

and so an estimate is ∫ ∞

−∞
[(Kh ∗ f̂P (·; g))(x)− f̂P (x; g))]2 dx

9
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where the target density f has been replaced by its pilot kernel estimate f̂P . Then

SCV(h) = n−1h−1R(K) +
∫ ∞

−∞
[(Kh ∗ f̂P (·; g))(x)− f̂P (x; g))]2 dx

= n−1h−1R(K) + n−2
n∑

i=1

n∑
j=1

(Kh ∗Kh ∗ Lg ∗ Lg − 2Kh ∗ Lg ∗ Lg

+ Lg ∗ Lg)(Xi −Xj)

It turns out that if we use the leave-one-out version of the pilot estimator f̂P,−i(x; g)

instead, we still have an asymptotically equivalent expression for SCV.

With the SCV in this form, a connection with LSCV is more easily ascertained. The

LSCV can be expressed as

LSCV(h) = n−1h−1R(K) + n−1(n− 1)−1
n∑

i=1

n∑
j=1

(Kh ∗Kh − 2Kh)(Xi −Xj).

So if there are no replications in the data (which occurs with probability 1 for continuous

data), then this is SCV(h) with g = 0 (since L0 can be thought of as the Dirac delta

function).

Hall et al. (1992) show that the SCV is also asymptotically equivalent to the smoothed

bootstrap of Taylor (1989) and Faraway & Jhun (1990). The smoothed bootstrap is based

on resampling from a pilot kernel density estimate f̂P (x; g) to estimate the MISE and its

minimiser. Let X∗
1 , X

∗
2 , . . . , X

∗
n be a bootstrap sample taken from f̂P (x; g) with L = K.

Let the bootstrap kernel density estimate be

f̂∗(x;h) = n−1
n∑

i=1

Kh(x−X∗
i )

and E∗ and Var∗ be the expected value and variance with respect to the bootstrap density

f̂P then the bootstrap estimate of the MISE is

MISE∗ f̂∗(·;h) =
∫ ∞

−∞
Var∗f̂∗(x;h) + [E∗ f̂∗(x;h)− f(x)]2 dx

= SCV(h) + o(n−1h−1).

There are two main ways we look at the performance of these different selectors. One

is their asymptotic relative convergence rate and the other is their finite sample behaviour.

The relative convergence rate of a selector ĥ to the MISE-optimal bandwidth hMISE is n−α

if

(ĥ− hMISE)/hMISE = Op(n−α) (1.8)

for some α > 0. A considerable proportion of the literature is devoted to deriving these

relative convergence rates.
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Sheather & Jones (1991) show that the Sheather-Jones plug-in selector has relative

rate n−5/14. Hall et al. (1991) show that by using higher order kernels, this rate can be

increased to n−1/2. Hall & Marron (1991) show that the rate n−1/2 is the fastest possible

rate relative to hMISE for any selector. For the LSCV selector, Hall & Marron (1987)

derive the rate of n−1/10. Scott & Terrell (1987) show that the BCV selector has the

same rate of convergence n−1/10 using similar techniques. For SCV, Jones et al. (1991)

show that if the pilot bandwidth g is independent of h then the rate of convergence is

n−5/14 whereas for a judicious choice of dependency between g and h can lead to n−1/2

convergence. Wand & Jones (1995, pp. 79–86) contains summary derivations of all these

rates. For the above selectors (except those with rate n−1/2), the rates of convergence

remain the same if we consider them with respect to hAMISE rather than hMISE. This

is because the relative discrepancy between hAMISE and hMISE is of order n−2/5 which is

negligible when compared to the slower convergence rates mentioned above.

Authors who have made comparative simulation studies of univariate bandwidth se-

lectors are Park & Marron (1990), Park & Turlach (1992), Cao et al. (1994), Chiu (1996),

Jones et al. (1996). Turlach (1993) and Wand & Jones (1995) collate the results from

existing simulation studies (including many of those above), whilst also adding their own

insights. Sheather (1992) looks at various selectors for real datasets. Chiu (1991) looks at

simulation results from a frequency domain point of view. Loader (1999) takes a different

approach to the other authors and makes some iconoclastic observations.

The most important conclusion from these review papers is that there is no uniformly

best bandwidth selector for all target densities. The shape and structure of the target

density heavily influence which selectors perform well. Nonetheless most of these authors

agree that plug-in (in particular the Sheather-Jones version) and smoothed cross validation

methods have the widest range of usefulness though least squares cross validation, because

of its non-reliance on asymptotics, can still be useful in some cases.

1.3.2 Multivariate bandwidth selectors

The main reasons that multivariate kernel density estimators have been relatively neglected

is that they, in their most general form, are far more computationally and mathematically

involved than univariate estimators. Selecting a bandwidth matrix rather than just a

scalar bandwidth raises difficulties that have no direct analogue in the univariate case.

Most important of these is that a bandwidth matrix induces an orientation of the ker-

nel function. The monographs of Bowman & Azzalini (1997), Scott (1992), Silverman

(1986), Simonoff (1996) and Wand & Jones (1995) provide an overview of the research

already carried out in multivariate density estimation. These contain relatively super-

ficial treatments of multivariate bandwidth selectors when compared to their univariate
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counterparts. We need to delve into the journal literature to trace, in a more detailed

manner, the development of multivariate kernel density estimators and their bandwidth

matrix selectors.

The type of orientation of the kernel function is controlled by the parameterisation

of the bandwidth matrix. Wand & Jones (1993) consider parameterisation for bivariate

bandwidth matrices. There are respectively three main classes (i) – (iii) and three hybrid

classes (iv) – (vi) of parameterisation:

(i) the class of all symmetric, positive definite matrices: H =
[
h2

1 h12

h12 h2
2

]

(ii) the class of all diagonal, positive definite matrices: dg H =
[
h2

1 0
0 h2

2

]

(iii) the class of all positive constants times the identity matrix: h2I =
[
h2 0
0 h2

]

(iv) the class of all positive constants times the sample variance S : h2S =
[
h2S2

1 h2S12

h2S12 h2S2
2

]

(v) the class of all positive constants times dg S : h2 dg S =
[
h2S2

1 0
0 h2S2

2

]
(vi) the class of matrices obtained by using the correlation coefficient ρ12 to determine

the rotation:
[

h2
1 ρ12h1h2

ρ12h1h2 h2
2

]
The diagonal matrix parameterisation (ii), which is the most commonly used one, is in-

appropriate in cases like Figure 1.3(a). Most of the probability mass of the target density

is obliquely oriented but the kernel maintains an orientation to the axes. For general use,

(iii) h2I is too restrictive. As an example consider Figure 1.3(b). The target density has

different amounts of spreading in the co-ordinate directions and its contours are ellipses

whereas the kernel’s contours are circular. Of the hybrid parameterisations (iv) – (vi), the

first two (iv) – (v) are inadvisable for general use with a global bandwidth matrix. These

parameterisations lead to kernels that align themselves according to the variance matrix of

the target density as seen in Figure 1.3(c). They have contours that are horizontal ellipses

whereas the components of the target density have vertical elliptical contours. The third

hybrid parameterisation (vi) depends on the appropriateness of the correlation coefficient

as a measure of orientation of the density, so again it is not generally used. In Figure

1.3(d), the kernel is oriented according to the correlation matrix, almost in a perpendic-

ular direction to the individual components of the density. Since we wish to derive an

automatic bandwidth selector for the widest possible range of situations, we focus on the

most general parameterisation i.e. (i) full bandwidth matrices.
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(a) (b)

(c) (d)

Figure 1.3: Bandwidth matrix parameterisations: target density and kernel shapes

The first foray into multivariate kernel density estimation in the current framework is

by Cacoullos (1966), who mostly investigates bandwidth matrices of the parameterisation

h2I. Using this parameterisation the kernel density estimator is

f̂(x;h) = n−1h−d
n∑

i=1

K(h−1(x−Xi)).

The asymptotic mean squared error (AMSE) of f̂ is

AMSE f̂(x;h) = n−1h−dR(K)f(x) + 1
4h

4µ2(K)2 tr(D2f(x)).

It is straightforward to see that the minimiser of this is order n−1/(d+4). The consistency

and asymptotic bounds for the bias and mean squared error of f̂ using this type of band-

width matrix are derived. Some of these results are extended to diagonal bandwidth

matrices of the form dg H or diag(h2
1, h

2
2, . . . , h

2
d). It is important to note that closed forms

for the AMSE optimal bandwidths are no longer available for d > 2. Despite this lack of

closed form solutions, the diagonal case is more appropriate when the components of the

data vector have incommensurable characteristics.

Epanechnikov (1969) extends the work of Cacoullos (1966) in the context of the AMISE

rather than AMSE. Epanechnikov attempts to optimise the choice of both the bandwidths
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and the kernel function. A closed form solution is only available if h1 = · · · = hd = h :

hAMISE =

[
dR(K)

nµ2(K)2
∫∞
−∞ tr2(D2f(x)) dx

]1/(d+4)

.

Having found an optimal bandwidth, the author then proceeds to find an optimal kernel.

This optimal kernel is now known as the Epanechnikov kernel. This is followed up by

an examination of the behaviour of the AMISE of the kernel density estimator using

both the optimal bandwidth and optimal kernel. We choose not to use the Epanechnikov

kernel, even though it is optimal, because it is not sufficiently smooth for our purposes.

Fortunately the loss in efficiency in using the most other common kernels (including the

normal) is small – see Wand & Jones (1995, Section 2.7).

Deheuvels (1977) examines full bandwidth matrices of the form h2H′ where H′ is an

orthogonal matrix which does not depend on the sample size n. (This case subsumes the h2I

case.) Deheveuels then derives an optimal choice of h. In common with Cacoullos (1966)

and Epanechnikov (1969), this is a solution to an essentially univariate problem. These

three early works also have in common that in the formulas for their optimal bandwidths

there remain quantities that depend on f and the estimation of these unknown quantities

is not considered. Thus they establish a theoretical basis for practical bandwidth selectors

without supplying data-based algorithms.

We now turn to the literature in which attempts to build these algorithms are explored.

Stone (1984) looks at the multivariate least squares cross validation criterion. It is a

straightforward generalisation of the univariate form:

LSCV(H) =
∫

Rd
f̂(x;H)2 dx− 2n−1

n∑
i=1

f̂−i(Xi;H).

Stone shows that the LSCV selector converges asymptotically in probability to HMISE

(in the context of a diagonal matrix selector) if the density f and its marginal densities

are bounded. The multivariate LSCV selector retains the characteristics of its univariate

counterpart i.e. simple interpretation and implementation, and non-reliance on asymptotic

expansions for its computation.

Sain et al. (1994) re-examine LSCV selectors as well as generalising the biased cross

validation, and bootstrap and smoothed cross validation selectors. These authors only

consider the case of product kernels which is equivalent to using diagonal bandwidth

matrices. The BCV criterion that they use is

BCV(H) = n−1R(K)|H|−1/2 + 1
4(vechT H)Ψ̃4(vechH)

where Ψ̃4 is an estimator of Ψ4 and is made up of estimates of the type, for |r| = 4,

ψ̃r(H) = n−1
n∑

i=1

f̂
(r)
−i (Xi;H) = n−1(n− 1)−1

n∑
i=1

n∑
j=1
j 6=i

K
(r)
H (Xi −Xj).
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This uses a different estimator than the univariate BCV selector of Scott & Terrell (1987).

The general multivariate SCV criterion is

SCV(H) = n−1R(K)|H|−1/2 + n−2
n∑

i=1

n∑
j=1

(KH ∗KH ∗ LG ∗ LG − 2KH ∗ LG ∗ LG

+ LG ∗ LG)(Xi −Xj)

where L is a pilot kernel and G is a pilot bandwidth matrix. Sain et al. (1994) use a less

general version, as they set G = H. Based on their asymptotic results and simulation

study, they recommend the BCV selector. However their SCV selector is suboptimal since

they ignore the possibility of optimally selecting the pilot G. It is not clear whether

the BCV selector would still perform better than the SCV selector with an appropriately

chosen pilot bandwidth.

Plug-in selectors were generalised to the multivariate case by Wand & Jones (1994),

extending the approach taken by Sheather & Jones (1991). Plug-in selectors are similar

to BCV selectors except for the way that is used to estimate Ψ4 :

PI(H) = n−1R(K)|H|−1/2 + 1
4(vechT H)Ψ̂4(vechH)

where Ψ̂4 is made up of estimates of the type, for |r| = 4,

ψ̂r(G) = n−1
n∑

i=1

f̂ (r)(Xi;G) = n−2
n∑

i=1

n∑
j=1

K
(r)
G (Xi −Xj).

Here G may be different to and independent of H. By using a different pilot bandwidth

matrix, we have more scope than BCV selectors but this leaves us with the problem of

selecting an appropriate pilot. Wand and Jones develop an algorithm to find such a pilot

bandwidth. Furthermore they show, with their theoretical analysis and simulation study,

that the good properties of one dimensional plug-in selectors mostly carry over to the

multi-dimensional case. This is done in detail for diagonal bandwidth matrices though

they supply an outline for full bandwidth matrices.

Cross validation and plug-in selectors are the most commonly used selectors. An-

other type of selector, less frequently used, is introduced by Terrell (1990): the maximal

smoothing selector. This is the selector that induces the smoothest density estimate that

is consistent with the data scale. Terrell uses the parameterisation h2H′ where |H′| = 1

and a kernel K such that
∫

Rd xxTK(x) dx = Id then the AMISE is

AMISE f̂(·;h) = n−1h−dR(K) + 1
4h

4

∫
Rd

tr2(H′D2f(x)) dx

which has a minimum at

h =
[

dR(K)
n
∫

Rd tr2(H′D2f(x)) dx

]1/(d+4)

.
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Now we proceed by a minimax approach: first we find the density f (with variance Id)

that gives the maximum value of the integral in the denominator and then minimise it

over H′. We then set the maximally smoothed selector to this value, which is

ĤMS =
[
(d+ 8)(d+6)/2πd/2R(K)
16(d+ 2)nΓ(d/2 + 4)

]2/(d+4)

S.

It is Terrell’s opinion that we should use a conservative approach so as not to produce

spurious features in the data and that the onus is to provide evidence for the existence

of any features. Notice that (a) this the only multivariate bandwidth selector that has a

closed form and (b) it is of the form h2S which in general is not advisable, as noted earlier.

Authors who have supplied convergence rates are Sain et al. (1994), n−d/(2d+8) for their

cross validation selectors; and Wand & Jones (1994), n−min(8,d+4)/(2d+12) for their plug-in

selectors. These authors provide the details of the derivations for h2I type matrices though

they outline how to extend them to more general bandwidth matrices.

Cwik & Koronacki (1997b) perform a simulation study of a variety of multivariate

density estimators including a kernel density estimator with a Wand & Jones (1994) type

plug-in selector, a Friedman type projection pursuit estimator and an EM type clustering

estimator developed by Cwik & Koronacki (1997a). These authors’ conclusion is that the

EM clustering estimator is best overall but as all the test densities are normal mixtures

(assuming the number of mixture components is known) this is not entirely unexpected. To

date, there have been no large scale simulation studies of multivariate bandwidth selectors,

similar to those for univariate selectors.

1.3.3 Variable bandwidth selectors

We have now covered the main developments in fixed bandwidth selectors. Next we cover

generalisations of these fixed bandwidth selectors to variable bandwidth selectors. We

momentarily return to the univariate case for the exposition of these ideas. There are two

main classes of variable bandwidth selectors. In both cases we have a bandwidth function,

rather than a constant bandwidth, where either

� the bandwidth is different at each estimation point x : h(x)

� the bandwidth is different at each data point Xi: hi = ω(Xi), i = 1, . . . , n.

Here, the functions h(·) and ω(·) are considered to be non-random functions, in much

the same way that we consider a single bandwidth to be a non-random number. We will

use the terminology used by Sain & Scott (1996) and refer to these selectors as balloon

and sample-point selectors. The kernel density estimators arising from these selectors are

known as balloon and sample-point kernel density estimators. Other authors use the terms
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local and variable estimators. The former were introduced by Schucany (1989), building

on work done by authors such as Loftsgaarden & Quesenberry (1965). The latter were

introduced independently by Wagner (1975), Victor (1976) and Breiman et al. (1977).

The balloon estimator is

f̂B(x;h(x)) = n−1
n∑

i=1

Kh(x)(x−Xi).

If we look at f̂B at a single estimation point x0 then f̂B(x;h(x0)) is exactly the same as

f̂(x;h(x0)), a fixed kernel density estimator with bandwidth h(x0). The bandwidth is a

function of the estimation point and for a given point x0, all the kernels have the same

bandwidth h(x0). An illustration of this is in Figure 1.4. The data are the same as in

Figure 1.1. The (arbitrary) bandwidth function is h(x) = 0.0176 + 1/(x2 + 1) and we

look at two estimation points −0.5 and 1. The bandwidths are h(−0.5) = 0.8176 and

h(1) = 0.5176. The dashed lines are the kernels corresponding to h(−0.5) and the dotted

lines are for h(1). The balloon kernel density estimate is given by the solid line. Balloon

estimators typically do not integrate to 1 so they are not true density functions, a result

from focusing on estimating locally rather than globally. See Terrell & Scott (1992).

Figure 1.4: Univariate balloon kernel density estimate: solid line – kernel density estimate,
dotted and dashed lines – individual kernels

Sample point estimators are given by

f̂SP(x;ω) = n−1
n∑

i=1

Khi
(x−Xi)

where hi = ω(Xi), i = 1, 2, . . . , n. The difference between a sample point estimator and a

fixed kernel density estimator is that for the former, each kernel has a different bandwidth.

17



CHAPTER 1. KERNEL DENSITY ESTIMATION

It is also different from the balloon estimator as the bandwidths change at each of the data

points rather than at each estimation point. We look at Figure 1.5. The data points have

associated with them bandwidths h1 = 0.5070, h2 = 0.6168, h3 = 0.7423, h4 = 0.8070, h5 =

0.4169. So the kernels are all normal kernels with different bandwidths (the dashed lines).

To form the sample point kernel density estimator (the solid line), we sum these kernels

and divide by n. Since each of the kernels is a density function, the sample point estimator

remains a density function.

Figure 1.5: Univariate sample point kernel density estimate: solid line – kernel density
estimate, dashed lines – individual kernels

In these methods, we need to select a bandwidth function h(·) or ω(·). For the balloon

estimators, the most common choice is to build up a bandwidth function by collating

locally optimal bandwidths at each estimation point x. See Hazelton (1996), Hazelton

(1999). For sample point estimators, Abramson (1982) shows that if ω(Xi) = hf(Xi)−1/2,

where h is a constant, then this leads to an O(h4) bias rather than the usual O(h2) bias

for fixed bandwidth estimators. This form of the bandwidth function appeals intuitively

since it states that the smaller bandwidths should be used in those parts of the data set

with high density of points (which is controlled by the value of f) and larger bandwidths

in parts with lower density. This combination of small bandwidths near the modes and

large bandwidths in the tails should be able to detect fine features near the former and

prevent spurious features in the latter. Abramson’s suggestion is to use a pilot estimate

f̂P to give ω̂(Xi) = hf̂P (Xi)−1/2.

The theoretical improvement of using these variable bandwidth selectors is measured

by changes in the rate of convergence of the MISE of the resulting kernel density esti-
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mates. Recall that hAMISE = O(n−1/5) and at a single estimation point x0, we have

infh>0 MSE f̂(x0;h) = O(n−4/5). This serves as our benchmark to compare the perfor-

mance of the variable bandwidth selectors. From Jones (1990), the best possible con-

vergence rate of the MSE of the balloon estimator infh(x0)>0 MSE f̂B(x0;h(x0)) is n−4/5

(i.e. the same as the fixed kernel density estimator) though it has a smaller constant of

proportionality. The sample point estimator has a best possible rate (using the Abramson

selector) for infω(·)>0 MSE f̂SP(x0;ω) of n−8/9. Examples of studies of improvements with

finite samples are given in Foster (1995) for balloon selectors and Sain & Scott (1996) for

sample point selectors.

Terrell & Scott (1992) develop multivariate generalised kernel density estimators which

unify the fixed kernel density estimator, balloon and sample point kernel estimators as

well as other non-parametric density estimators (like frequency polygons and histograms),

though they focus on balloon estimators. They generalise the sample point estimator of

Breiman et al. (1977). They generalise the nearest neighbour estimator of Loftsgaarden &

Quesenberry (1965) and develop a balloon version of the estimator from Deheuvels (1977)

by using the curvature of f as well as the level of f. For another approach to balloon

estimators, see Abdous & Berlinet (1998) and their Rao-Blackwellised estimator.

The general multivariate sample point estimator is

f̂SP(x;Ω) = n−1
n∑

i=1

KΩ(Xi)(x−Xi).

There are many choices for this Ω function. The commonly used form attributed to

Abramson (1982) is Ω(Xi) = h2f(Xi)−1I. Using the reciprocal of f leads to a higher

order convergence for the bias, as in the univariate case. The problem then becomes

producing an appropriate pilot estimate of f before selecting h. Breiman et al. (1977) use

Ω(·) to be the k-th nearest neighbour function of Xi multiplied by the identity matrix.

This requires us to choose the number of nearest neighbours (which can be viewed as

an analogue to the bandwidth). Sain (2002) chooses Ω(·) to be a piecewise constant

function, following from Sain & Scott (1996), over a partition of the data into m bins i.e.

Ω(Xi) = Hj if Xi ∈ bin j. Then a modified version of the LSCV is minimised to select

appropriate bandwidth matrices.

Jones (1990) observes that we need not be restricted to exclusively to either of these

classes of variable bandwidth selectors, that it is possible to combine these two approaches

so that we have a bandwidth which depends on the data point and the estimation point.

Another combination is taken by Cwik & Koronacki (1997a) who extend the univariate

filtered kernel density estimate of Marchette et al. (1996) to higher dimensions. These

authors use a partitioned bandwidth selector similar to Sain (2002): instead of smoothing

at Xi according to KHj (x − Xi) only, smoothing is controlled by a weighted sum of
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KH1(x − Xi), . . . ,KHm(x − Xi). In effect all the different bandwidth matrices affect

estimation at Xi. The weights are determined by what the authors denote as filtering

functions. Their algorithm to estimate these filtering functions assumes f to be a finite

mixture density with known number of mixture components. In the simulation studies of

Cwik & Koronacki (1997b), only normal mixture test densities are considered and they an

EM type algorithm to fit normal mixtures. So it is not clear how this method will fare on

other test densities.

1.4 Structure of thesis

At the moment, the most significant gap in the knowledge of fixed multivariate selectors

is a concerted study of full bandwidth matrix selectors. In Chapter 2 we develop a fixed

full bandwidth matrix selector using plug-in methods. We supply rates of convergence, a

simulation study and applications to real data. In Chapter 3, we produce equivalents for

cross validation selectors. In Chapter 4 we take a by-way into variable bandwidth selection,

focusing on the partitioned selector which has a constant bandwidth within each partition

class. We select these bandwidths by drawing upon the knowledge from the previous two

chapters. In Chapter 5, we take a different by-way, this time into kernel discriminant

analysis, applying kernel density estimation with full bandwidth matrices to this problem.

In Chapter 6, we summarise all the results developed in this thesis and suggest future

avenues of research. In the appendices, there are a list of notation, supplementary tables

of results too detailed to fit into the main text and a description of the software developed

by the author for data analysis.
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Chapter 2

Plug-in bandwidth selectors

2.1 Introduction

Plug-in bandwidth selectors are based on the AMISE, implemented with pilot kernel es-

timates of functionals of the unknown target density f . Most important of these are the

fourth order functionals in Ψ4 which are part of the asymptotic integrated squared bias.

Plug-in selectors are already widely used for univariate kernel density estimation as they

have demonstrated good theoretical and practical properties; they have a fast rate of con-

vergence and have low variability. Multivariate plug-in selectors in comparison are less

well studied and less widely used.

Current methods of plug-in bandwidth matrix selection are mostly for diagonal band-

width matrices. Diagonal bandwidth matrices do indeed dramatically simplify the problem

since it is considerably easier to select a diagonal matrix than a full one. However, we are

now restricted to using kernels that are aligned to the co-ordinate axes and this will not

be adequate for densities which have large probability mass not parallel to the axes. This

was explored in Section 1.3.

To devise full plug-in selectors, we generalise existing diagonal plug-in selectors. We

encounter some problems with the lack of positive definiteness of Ψ̂4 if we simply use the

pilot plug-in selectors of Wand & Jones (1994). Its positive definiteness is essential to

the minimisation of the ÂMISE. We formulate a new pilot selector that guarantees the

positive definiteness of Ψ̂4 in Section 2.2. We supply the asymptotic analysis of the band-

width selectors using these pilot selectors in Section 2.3 by examining the relative rate of

convergence to the AMISE-optimal bandwidth matrix. We set up a general framework to

compute asymptotic relative rates of convergence that will be used repeatedly throughout

this thesis. This is followed by, in Section 2.5, an investigation of their finite sample prop-

erties with a simulation study and real data analysis. Whilst these lack the mathematical

rigour of the asymptotic results, they do provide information at realistic sample sizes.
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2.2 Optimal pilot bandwidth selectors

We develop a full bandwidth matrix selector in the following way. Let the plug-in criterion

be

PI(H) = n−1R(K)|H|−1/2 + 1
4µ2(K)2(vechT H)Ψ̂4(vechH). (2.1)

This is the AMISE, Equation (1.5), with Ψ4 replaced by its estimate Ψ̂4. Thus we wish

to find ĤPI, the minimiser of PI(H). In order to do this, we need to compute Ψ̂4. This

is done via estimates of the ψr functionals, ψ̂r(G), where G is a pilot bandwidth matrix,

usually different from H. These are then substituted or plugged-into Ψ4. This procedure

gives plug-in methods their name. The first step is to consider the problem of estimating

integrated density derivative functionals i.e. how to compute ψ̂r(G) and how to select G.

2.2.1 AMSE pilot bandwidth selectors

If we note that ψr =
∫

Rd f (r)(x)f(x) dx = E f (r)(X) where X has density f then the

natural estimator of ψr is the sample mean of f̂ (r)(Xi):

ψ̂r(G) = n−1
n∑

i=1

f̂ (r)(Xi;G) = n−2
n∑

i=1

n∑
j=1

K
(r)
G (Xi −Xj). (2.2)

This is known as the leave-in-diagonals estimator as it includes all the non-stochastic terms

where i = j. The bias of this estimator is

Bias ψ̂r(G) = n−1K
(r)
G (0) + 1

2µ2(K)
∫

Rd

tr(GD2f(x))f (r)(x) dx

+ o(n−1|G|−|r|/2 + ‖vechG‖)

and the variance is

Var ψ̂r(G) = 2n−2ψ0

∫
Rd

K
(r)
G (x)2 dx+ 4n−1

[ ∫
Rd

f (r)(x)2f(x) dx− ψ2
r

]
+ o(n−2|G|−1/2‖vechG−|r|‖+n−1).

Both expressions are taken from Wand & Jones (1995). Once again, we encounter the

problem of choosing the parameterisation of a matrix selector: this time it is for the pilot

bandwidth G. Recall from Section 1.3 that the h2I parameterisation was considered too

restrictive for the final bandwidth H. We relax this restriction for G, following Wand &

Jones (1994), as otherwise the symbolic manipulations become unwieldy. So we param-

eterise G as g2I. Now it appears that this will defeat the purpose of using full matrices

for H but this is not the case. First, pilot bandwidths need not be specified to the same

degree of accuracy as final bandwidths. Second, with appropriate pre-transforming of the

data (discussed in Section 2.2.3), the effects of this more restricted parameterisation can
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be somewhat mitigated. Third, the parameterisation of G does not affect the convergence

rate of ψ̂r(G). So this is a suitable compromise between tractability and flexibility.

Let G be in the form g2I. Let |r| = j then the bias simplifies to

Bias ψ̂r(g) = n−1g−d−jK(r)(0) + 1
2g

2µ2(K)
d∑

i=1

ψr+2ei + o(n−1g−d−j + g2). (2.3)

The variance simplifies to

Var ψ̂r(g) = 2n−2g−d−2jψ0R(K(r)) + o(n−2g−d−2j) (2.4)

provided that K(r) is square integrable and g = gn → 0 and n−1g−d−2j → 0 as n → ∞.

This leads to

AMSE ψ̂r(g) = 2n−2g−d−2jψ0R(K(r))

+
[
n−1g−d−jK(r)(0) + 1

2g
2µ2(K)

d∑
i=1

ψr+2ei

]2

. (2.5)

Thus we are seeking

gr,AMSE = argmin
g>0

AMSE ψ̂r(g).

The following expressions for AMSE optimal pilot selectors are taken from Wand &

Jones (1994). For most common kernels, including the normal kernel, if all the elements

of r are even then K(r)(0) and ψr+2ei will be of opposite sign, for i = 1, 2, . . . , d. Then

the bias terms will cancel each other if g is equal to

gr,AMSE =
[

−2K(r)(0)

µ2(K)
(∑d

i=1 ψr+2ei

)
n

]1/(d+j+2)

. (2.6)

If at least one of the elements of r is odd then K(r)(0) = 0. In this case, we find the

minimum AMSE if g is equal to

gr,AMSE =
[

2ψ0(2|r|+ d)R(K(r))

µ2(K)2
(∑d

i=1 ψr+2ei

)2
n2

]1/(d+2j+4)

. (2.7)

These expressions gr,AMSE involve higher order ψr functionals. This dependency con-

tinues for all r so we need a way to resolve this problem. One convenient way is to use

normal reference approximations. This is just

ψ̂NR
r = (−1)|r|φ(r)

2S (0) (2.8)

where S is the sample variance. So starting with normal reference approximations of all

ψr functionals for a given order, we can proceed to find estimates of the lower order ψr

functionals.
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This method of computing ψ̂r thus requires one pilot bandwidth for each functional.

This means that computing Ψ̂4 requires many separate pilot bandwidths. This is not

a problem for diagonal bandwidth matrices. It is however a potential problem for full

bandwidth matrices as the Ψ̂4 estimated in this element-wise way is not guaranteed to

be positive definite. This estimator could be non-positive definite and would lead to no

solution to the optimisation of the PI(H) or it could be nearly singular and would lead

to numerical instabilities. Hence using appropriate estimators of each element of a matrix

will not necessarily lead to an appropriate estimator of the matrix as a whole. This

motivates us to create a new pilot selector which does not suffer from this drawback i.e.

we are, in effect, attempting to estimate a matrix in its entirety rather than element-wise.

Positive-definiteness can be guaranteed by using a single, common pilot bandwidth for all

ψr functionals, as we now demonstrate.

Lemma 1. If a single pilot bandwidth matrix and normal kernels are used to estimate all

the ψr functionals then Ψ̂4 is positive definite.

Proof. We notice that if we replace f with f̂(·; 1
2G) in ψr, |r| = 4, in Equation (1.7) then

we have ψ̂r(G) :

∫
Rd
f̂ (r)(x; 1

2G)f̂(x; 1
2G) dx = n−2

n∑
i=1

n∑
j=1

∫
Rd
φ

(r)
1
2G

(x−Xi)φ1
2G

(x−Xj) dx

= (−1)|r|n−2
n∑

i=1

n∑
j=1

φ
(r)
G (Xi −Xj)

= ψ̂4(G).

This implies that Ψ̂4 is obtained by replacing f with f̂(·; 1
2G) in Ψ4. From Equation (1.6),

Ψ4 is positive definite by definition for all densities f. Since f̂(·; 1
2G) is a density function

itself, Ψ̂4 is positive definite.

2.2.2 SAMSE pilot bandwidth selector

Modifying AMSE pilot selectors, we derive a SAMSE (Sum of Asymptotic Mean Squared

Error) pilot selector. This type of selector has been specially devised to maintain the

positive definiteness of Ψ̂4 which is crucial to the numerical minimisation of the plug-in

criterion PI. This selector is also simpler and more parsimonious than AMSE selectors.

We define SAMSE for the j-th order integrated density derivative functional estimators

to be

SAMSEj(G) =
∑

r:|r|=j

AMSE ψ̂r(G).
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Since expressions for AMSE (and hence SAMSE) are difficult to derive for a full or even

a diagonal G then we will again use the form g2I as in Section 2.2.1. We wish to find

gj,SAMSE = argmin
g>0

SAMSEj(g).

The SAMSE criterion is rewritten as follows:∑
r:|r|=j

AMSE ψ̂r(G) =
∑

r:|r|=j

2n−2g−2j−dR(K(r))

+
∑

r:|r|=j

[
n−1g−j−dK(r)(0) + 1

2g
2µ2(K)

d∑
i=1

ψr+2ei

]2

= 2n−2g−2j−dA0 + n−2g−2j−2dA1 + n−1g−j−d+2A2 + 1
4g

4A3

where A0, A1, A2 and A3 are constants (i.e. containing K and f but not n) defined by

A0 =
∑

r:|r|=j

R(K(r))

A1 =
∑

r:|r|=j

K(r)(0)2

A2 = µ2(K)
∑

r:|r|=j

K(r)(0)
( d∑

i=1

ψr+2ei

)

A3 = µ2(K)2
∑

r:|r|=j

( d∑
i=1

ψr+2ei

)2

.

We can see that A0, A1 and A3 are positive by construction. A2 is negative because if all

elements if r are even, K(r)(0) and ψr+2ei are of opposite sign and if at least one of its

elements is odd, K(r)(0) = 0.

We can simplify this expression as the first term is O(n−2g−2j−d) and the second term

is O(n−2g−2j−2d) which means the latter always dominates the former. If we remove the

first term (which is the asymptotic variance) we are left with

SAMSEj(g) = n−2g−2j−2dA1 + n−1g−j−d+2A2 + 1
4g

4A3. (2.9)

In effect, we are only considering the contribution of the squared bias. Then differentiating

this with respect to g gives

∂

∂g
SAMSEj(g) = −(2j + 2d)n−2g−2j−2d−1A1 − (j + d− 2)n−1g−j−d+1A2 + g3A3.

This is a quadratic in n−1g−j−d−2 and has solution

gj,SAMSE =
[

(4j + 4d)A2(
(−j − d+ 2)A2 +

√
(−j − d+ 2)2A2

2 + (8j + 8d)A1A3

)
n

]1/(j+d+2)

.

(2.10)
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This is the j-th order SAMSE pilot bandwidth. Lemma 1 demonstrates that under given

conditions using any single, common pilot bandwidth selector does indeed guarantee the

positive definiteness of Ψ̂4. Thus it follows immediately that using the SAMSE pilot

bandwidth guarantees positive definiteness.

The other main advantage of SAMSE pilot selectors is that they are more parsimonious

than AMSE pilot selectors when we compare the number of pilot bandwidths (computed

with a kernel estimate rather than with normal reference) and final bandwidths that each

selector requires. An m-stage diagonal bandwidth matrix with AMSE pilots computes

m∑
i=1

min(i,d−1)∑
j=0

(
i

j

)(
d

j + 1

)
pilot plus d final bandwidths. An m-stage full bandwidth matrix with AMSE pilots com-

putes

νm +
m∑

i=1

min(2i,d−1)∑
j=0

(
2i+ 1
j

)(
d

j + 1

)
pilot, where ν1 = 0, ν1 = 1, ν2 = 3 and for m = 4, 5, 6, . . .

νm =
m−3∑
i=1

min(i,d−1)∑
j=0

(
i

j

)(
d

j + 1

)
,

plus 1
2d(d+ 1) final bandwidths. These expressions for the number of AMSE pilot band-

widths are taken from Wand & Jones (1994). An m-stage full bandwidth matrix with

SAMSE pilots computes m pilots + 1
2d(d+1) final bandwidths. Table 2.2.2 contains these

counts for m = 2 and for d = 1, 2, . . . , 6. We can see that SAMSE selectors remain feasible

for all dimensions listed in the table whilst AMSE selectors start to become infeasible for

d > 3 since the number of bandwidths required grows combinatorially.

Number of pilot plus final bandwidths
d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

Diagonal H with AMSE pilots 3 9 19 34 55 83
Full H with AMSE pilots 3 16 50 130 296 610
Full H with SAMSE pilots 3 5 8 12 17 23

Table 2.1: Number of pilot and final bandwidths for 2-stage plug-in selectors

2.2.3 Pre-scaling and pre-sphering

In the previous sections we parameterise G as g2I. To use this parameterisation effectively,

each component of the data vector should be commensurate. So we transform the data

X1,X2, . . . ,Xn before any pilot bandwidth selection. A common transformation is pre-

scaling. By pre-scaling, we transform the data so that they have unit variance in each
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co-ordinate direction. Let X∗ be the scaled version of X, i.e. X∗ = S−1/2
D X where

SD = dg S. This means that

X∗ = (S−1
1 X1, S

−1
2 X2, . . . , S

−1
d Xd)

where S2
i is the i-th marginal sample variance. Let S∗D be the sample variance of the scaled

data then

S∗D = V̂arX∗ = S−1/2
D (V̂arX)S−1/2

D = S−1/2
D SS−1/2

D =

 1 S12
S1S2

. . . S1d
S1Sd

...
...

S1d
S1Sd

S2d
S2Sd

. . . 1

 .
Another transformation that could be applied to the data, before pilot bandwidth

selection, is pre-sphering. Pre-sphering transforms the data so that their variance is now

the identity matrix. So here the data are rotated as well as dilated/contracted whereas

scaling only dilates/contracts the data. The sphering transformation is X∗ = S−1/2X.

Then the variance of the pre-sphered data is

S∗ = V̂arX∗ = S−1/2(V̂arX)S−1/2 = S−1/2SS−1/2 = I.

Once we have pre-transformed the data, we can find a bandwidth H∗ on this trans-

formed scale. The next lemma answers the question of how to find H, the bandwidth on

the original data scale, from H∗.

Lemma 2. If H is the bandwidth matrix for the original data and H∗ is the bandwidth

matrix for the pre-sphered data then

H = S1/2H∗S1/2.

A corresponding result holds for pre-scaled data with S replaced by SD.

Proof. We show this by first considering the kernel density estimate on the sphered data:

f̂∗(x∗;H∗) = n−1
n∑

i=1

KH∗
(
x∗ −X∗

i

)
= n−1|H∗|−1/2

n∑
i=1

K
(
H∗−1/2(x∗ −X∗

i )
)

= n−1|H∗|−1/2
n∑

i=1

K
(
(S1/2H∗1/2)−1(x−Xi)

)
= n−1|S|1/2|S1/2H∗S1/2|−1/2

n∑
i=1

K
(
(S1/2H∗S1/2)−1/2(x−Xi)

)
.

The last equality follows from the result that if A and B are positive definite and sym-

metric matrices then (B1/2AB1/2)1/2 = B1/2A1/2. Since x∗ = S−1/2x is a change of

variables, then f̂∗(x∗;H∗) = |S|1/2f̂(x;H) and thus H = S1/2H∗S1/2. Furthermore, S

can be replaced with SD to give a corresponding result for pre-scaling.
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2.3 Convergence rates for plug-in selectors

The performance of a bandwidth matrix selector can be assessed by its relative rate of

convergence. We need to adapt the definition for the relative rate for a univariate selector

in Equation (1.8): a matrix selector Ĥ converges to HAMISE with relative rate n−α if

vech(Ĥ−HAMISE) = Op(Jd′n
−α) vechHAMISE (2.11)

where Jd′ is the d′× d′ matrix of ones and d′ = 1
2d(d+ 1). Here we extend the asymptotic

order notation to matrix sequences. Specifically let {An} and {Bn} be matrix sequences

with An and Bn having the same dimensions. We write An = o(Bn) if [An]ij = o([Bn]ij)

for all elements [An]ij of An and [Bn]ij of Bn. This definition, for the one dimensional

case reduces to the usual relative rate of convergence, Equation (1.8). At first glance, it

appears that the ‘straightforward’ multi-dimensional generalisation is vech(Ĥ−HAMISE) =

Op(Id′n
−α) vechHAMISE i.e. using Id′ rather than Jd′ . This is not adequate for cases when

the off-diagonal elements of HAMISE are identically zero (e.g. when the variance of f is a

diagonal matrix) because then left hand side is identically zero and the relative rate then is

undefined. Our definition using Jd′ prevents such problems by taking linear combinations

of elements of HAMISE as these linear combinations include at least one non-zero diagonal

element. So in effect we are defining rates of convergence based on the ‘overall’ order of

HAMISE rather than a purely element-wise order. Of course this notion of an overall order

of HAMISE relies on the fact that its elements are of the same order.

We also have corresponding definitions for O, op and Op. The preceding definitions can

all be defined in terms of HMISE as well. Equation (2.11) can be unwieldy since we do not

a closed form for Ĥ in most cases. We now look for an alternative route to finding relative

convergence rates using the next lemma which we will call the ‘AMSE Lemma’.

Lemma 3 (AMSE). Assume that

(A1) All entries in D2f(x) are bounded, continuous and square integrable.

(A2) All entries of H → 0 and n−1|H|−1/2 → 0, as n→∞.

(A3) K is a spherically symmetric probability density.

Let Ĥ = argmin
H∈H

ÂMISE(H) be a bandwidth selector and define its mean squared error

(MSE) by

MSE (vech Ĥ) = E[vech(Ĥ−HAMISE) vechT (Ĥ−HAMISE)].

Then MSE(vech Ĥ) = [Id′ + o(Jd′)] AMSE(vech Ĥ) where the asymptotic MSE can be

written as

AMSE (vech Ĥ) = AVar(vech Ĥ) + [ABias(vech Ĥ)][ABias(vech Ĥ)]T
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in which

ABias(vech Ĥ) = [D2
HAMISE(HAMISE)]−1 E[DH(ÂMISE−AMISE)(HAMISE)]

AVar(vech Ĥ) = [D2
HAMISE(HAMISE)]−1 Var[DH(ÂMISE−AMISE)(HAMISE)]

× [D2
HAMISE(HAMISE)]−1.

Here DH is the differential operator with respect to vechH and D2
H is the corresponding

Hessian operator.

Proof. We may expand DHÂMISE as follows:

DHÂMISE(Ĥ) = DH(ÂMISE−AMISE)(Ĥ) +DHAMISE(Ĥ)

= [Id′ + op(Jd′)]DH(ÂMISE−AMISE)(HAMISE) +
{
DHAMISE(HAMISE)

+ [Id′ + op(Jd′)]D2
HAMISE(HAMISE) vech(Ĥ−HAMISE)

}
.

We have DHÂMISE(Ĥ) = 0 and DHAMISE(HAMISE) = 0. This implies that

vech(Ĥ−HAMISE) = −[Id′ + op(Jd′)][D2
HAMISE(HAMISE)]−1

×DH(ÂMISE−AMISE)(HAMISE).

Taking expectations and variances respectively completes the proof.

We choose this particular expansion because we can ascertain from it that the closeness

of Ĥ to HAMISE is driven by the closeness of ÂMISE to AMISE i.e. our selector will be

closer to its target if our estimate of the error criterion is better.

The AMSE Lemma (Lemma 3) forms a central component of our strategy to compute

the relative convergence rates of Ĥ to HAMISE :

1. Find expressions for the order of the expected value and variance of DH(ÂMISE−
AMISE)(HAMISE). They are the same order as, and most importantly, easier to

evaluate than ABias(vech Ĥ) and AVar(vech Ĥ).

2. Combine ABias(vech Ĥ) and AVar(vech Ĥ) into AMSE(vech Ĥ) and note that if

MSE(vech Ĥ) = O(Jd′n
−2α)(vechHAMISE)(vechHAMISE)T then Ĥ has relative rate

n−α.

The AMSE Lemma can be adapted to consider convergence to HMISE by replacing all

references to AMISE by MISE. Nonetheless, it is generally simpler to consider convergence

to HAMISE and then examine whether the discrepancy between HMISE and its asymptotic

form is significant.

For the plug-in selectors, the estimate of AMISE is PI. We have

(PI−AMISE)(H) = 1
4µ2(K)2(vechT H)(Ψ̂4 −Ψ4)(vechH)[1 + op(1)]
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so

DH(PI−AMISE)(H) = 1
2µ2(K)2[Id′ + op(Jd′)](Ψ̂4 −Ψ4)(vechH).

Then we have

E[DH(PI−AMISE)(H)] = 1
2µ2(K)2[Id′ + op(Jd′)](Bias Ψ̂4)(vechH)

Var[DH(PI−AMISE)(H)] = 1
4µ2(K)4[Id′ + op(Jd′)] Var[Ψ̂4(vechH)].

These expressions will be used in the next two lemmas where we compute the asymptotic

bias and variance of the AMSE and SAMSE plug-in selectors, which we denote as ĤPI,AMSE

and ĤPI,SAMSE.

Lemma 4. Assume A1 – A3 from Lemma 3. Further assume that K(r) is square integrable

and that if |r| = 4 then K(r)(0) = 1 if all elements of r are even and K(r)(0) = 0

otherwise. If we use the AMSE pilot bandwidths then

ABias(vech ĤPI,AMSE) = O(Jd′n
−4/(d+12)) vechHAMISE

AVar(vech ĤPI,AMSE) = O(Jd′n
−8/(d+12))(vechHAMISE)(vechT HAMISE).

Proof. Following Wand & Jones (1994), let |r| = j then the bias and variance of ψ̂r(g)

are respectively:

Bias ψ̂r(g) = n−1g−d−jK(r)(0) + 1
2g

2µ2(K)
d∑

i=1

ψr+ei +O(g4)

Var ψ̂r(g) = 2n−2g−d−2jψ0R(K(r)) + o(n−2g−d−2j).

There are two cases we need to consider. From Section 2.2.1, if all elements of r are

even then the pilot bandwidth which minimises the AMSE is gr,AMSE = O(n−1/(j+d+2)).

This choice of g is a result from the annihilation of the leading terms of the bias so then

Bias ψ̂r(gr,AMSE) = O(g4
r,AMSE) = O(n−4/(d+j+2))

Var ψ̂r(gr,AMSE) = O(n−2g−d−2j
r,AMSE) = O(n−(d+4)/(d+j+2)).

On the other hand, if at least one element of r is odd then K(r)(0) = 0 and the pilot

bandwidth which minimises the AMSE is gr,AMSE = O(n−2/(d+2j+4)). Then the bias and

variance are

Bias ψ̂r(gr,AMSE) = O(g2
r,AMSE) = O(n−4/(d+2j+4))

Var ψ̂r(gr,AMSE) = O(n−2g−d−2j
r,AMSE) = O(n−8/(d+2j+4)).
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Combining these two cases together we have E Ψ̂4 − Ψ4 = O(Jd′n
−4/(d+2j+2)) and

Var[Ψ̂4(vechH)] = O(Jd′(n−(d+4)/(d+j+2) + n−8/(d+2j+4)))(vechH)(vechT H). Thus

E[DH(PI−AMISE)(HAMISE)] = O(Jd′n
−4/(d+2j+2)) vechHAMISE

Var[DH(PI−AMISE)(HAMISE)] = O(Jd′(n−(d+4)/(d+j+2) + n−8/(d+2j+4)))

× (vechHAMISE)(vechT HAMISE).

The result follows as j = 4 and D2
HAMISE(HAMISE) = O(Jd). From Wand (1992) the

Hessian matrix of AMISE(H) is

D2
HAMISE(H) = 1

4n
−1(4π)−d/2|H|−1/2DT

d (H−1 ⊗ Id)

× [(vec Id)(vecT Id) + 2Id2 ](Id ⊗H−1)Dd + 1
2Ψ4.

As HAMISE = O(Jd′n
−2/(d+4)) then D2

HAMISE(H) tends to a constant, positive definite

matrix as n→∞.

Lemma 5. Assume A1 – A3 from Lemma 3. Further assume that K(r) is square integrable

and that if |r| = 4 then K(r)(0) = 1 if all elements of r are even and K(r)(0) = 0

otherwise. If we use the SAMSE pilot bandwidth then

ABias(vech ĤPI,SAMSE) = Op(Jd′n
−2/(d+6)) vechHAMISE

AVar(vech ĤPI,SAMSE) = Op(Jd′n
−4/(d+6))(vechHAMISE)(vechT HAMISE).

Proof. From Section 2.2.2, the j-th order SAMSE pilot bandwidth is gj,SAMSE is order

n−1/(j+d+2). If all elements of r are even then the bias is

Bias ψ̂r(gj,SAMSE) = O(n−1g−d−j
j,SAMSE + g2

j,SAMSE) = O(n−2/(d+j+2)).

On the other hand, if at least one element of r is odd then K(r)(0) = 0 and the bias is

Bias ψ̂r(gj,SAMSE) = O(g2
j,SAMSE) = O(n−2/(d+j+2)).

Combining these together we have that E Ψ̂4 −Ψ4 = O(Jd′n
−2/(d+j+2)) and so

E[DH(PI−AMISE)(HAMISE)] = O(Jd′n
−2/(d+j+2)) vechHAMISE.

To form the SAMSE, we exclude the variances of ψ̂r as they are dominated by the

leading terms of the squared bias i.e.

Var[Ψ̂4(vechH)] = O((Jd′n
−4/(d+j+2))(vechH)(vechT H)

which implies that

Var[DH(PI−AMISE)(HAMISE)] = O(Jd′n
−4/(d+j+2))(vechHAMISE)(vechT HAMISE).

Substituting j = 4 and D2
HAMISE(HAMISE) = O(Jd) completes the proof.

31



CHAPTER 2. PLUG-IN BANDWIDTH SELECTORS

Putting Lemmas 4 and 5 together with the AMSE Lemma (Lemma 3) we can state

the following theorem about the convergence rates for plug-in selectors.

Theorem 1. Under the conditions of Lemmas 4 and 5,

1. The relative rate of convergence of ĤPI,AMSE is n−4/(d+12).

2. The relative rate of convergence of ĤPI,SAMSE is n−2/(d+6).

The additional conditions on K in Lemmas 4 and 5 are satisfied by most common

kernels including the normal kernel. The relative rate of convergence of ĤPI,AMSE to

HAMISE is slightly faster than that of ĤPI,SAMSE. See Table 2.2 for the rates for d up to

6. For the important bivariate case, the rate for ĤPI,AMSE is n−2/7 and for ĤPI,SAMSE is

n−1/4. For a sample of size n = 100 000 the ratio of n−2/7 to n−1/4 is about 1.5, so just

considering that convergence rates we will not offer compelling evidence of which plug-in

selector to use in practice. Wand & Jones (1994) show that their diagonal the plug-in

selector has rate n−min(8,d+4)/(2d+12). The rate persists even if the h2I parameterisation

is used instead. Jones (1992, Table 3) contains convergence rates for selectors of the h2I

parameterisation. The rate here agrees with our rate for the diagonal ĤPI,AMSE. This

rate is faster than those for the full bandwidth selectors. This implies that selecting the

off-diagonal elements of the full bandwidth matrix, which determine the orientation of the

kernel, is the most difficult aspect of full plug-in selection. Also in this table is the rate for

the Park & Marron (1990) plug-in selector which turns out to have the same n−4/(d+12)

rate as the full ĤPI,AMSE selector, even though they use different estimators for the ψr

functionals. The final row in Table 2.2 is the relative discrepancy between HAMISE and

HMISE. It is straightforward to show that

vech(HAMISE −HMISE) = O(Id′n
−2/(d+4)) vechHMISE.

If this discrepancy is smaller than the rate of convergence of Ĥ to HAMISE then Ĥ will

have the same rate with respect to HMISE. This is indeed the case for ĤPI,SAMSE. However,

the discrepancy between HAMISE and HMISE dominates the rate for ĤPI,AMSE for d > 4.

Convergence rate to HAMISE

Selector d d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

ĤPI,AMSE (diagonal) n−min(8,d+4)/(2d+12) n−5/14 n−3/8 n−7/18 n−2/5 n−4/11 n−1/3

ĤPI,AMSE n−4/(d+12) n−4/13 n−2/7 n−4/15 n−1/4 n−4/17 n−2/9

ĤPI,SAMSE n−2/(d+6) n−2/7 n−1/4 n−2/9 n−1/5 n−2/11 n−1/6

HAMISE −HMISE n−2/(d+4) n−2/5 n−1/3 n−2/7 n−1/4 n−2/9 n−1/5

Table 2.2: Comparison of convergence rates for plug-in selectors
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2.4 Estimating the optimal pilot bandwidths

The formulas for the optimal pilot bandwidths contain unknown quantities that depend

on the target density f , mostly through the ψr functionals. To apply these formulas in

practice will require us to estimate any unknown quantities. We show that the error intro-

duced from estimation is sufficiently small that it does not affect the rates of convergence

established previously using the ideal pilot selectors.

For the full AMSE bandwidth matrix the off-diagonal terms dominate the diagonal

terms. These off-diagonal terms can be estimated using pilot bandwidths gr,AMSE in

Equation (2.7). These pilot bandwidths are calculated from a bias minimisation procedure

since the squared bias is dominant over the variance. We also use bias minimisation for

the same reasons to compute gj,SAMSE in Equation (2.10). So all we have to show in order

to establish that the relative rates of convergence remain the same using the estimated

pilot bandwidths is to show that the estimated pilot ĝ is relatively consistent for the true

pilot g. This is true if the relative rate of convergence is n−α for some α > 0 i.e.

(ĝ − g)/g = Op(n−α).

Lemma 6. Let ĝ be an estimate of a pilot bandwidth g, constructed by replacing ψr with

ψ̂r. Under the conditions of Lemmas 4 and 5:

1. For the full AMSE optimal pilot for |r| = 4, the relative rate of convergence of

ĝr,AMSE to gr,AMSE is n−4/(d+16).

2. For the SAMSE optimal pilot for order 4, the relative rate of convergence of ĝ4,SAMSE

to g4,SAMSE is n−2/(d+8).

Proof. As ĝ = Op(g) then

ĝp − gp = (ĝ − g)(ĝp−1 + ĝp−2g + · · ·+ ĝgp−2 + gp−1) = (ĝ − g)O(gp−1)

and so
ĝ − g

g
= (ĝp − gp)O(g−p). (2.12)

For the full AMSE selector, the off-diagonal gr,AMSE (i.e. for odd r) dominate the

diagonal terms (i.e. even r). We have, for the former, with |r| = 4, from Equation (2.7)

g = O

((
n

d∑
i=1

ψr+2ei

)−2/(d+12))
.

Here we have left out the quantities that are not affected by the data i.e. those that do
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not involve n or are not required to be estimated. So

ĝ(d+12)/2 − g(d+12)/2 = Op

((
n

d∑
i=1

ψ̂r+2ei(g
′)
)−1

−
(
n

d∑
i=1

ψr+2ei

)−1)

= Op

(
n−1

( d∑
i=1

ψr+2ei

)−1( d∑
i=1

ψ̂r+2ei(g
′)
)−1)

×Op

( d∑
i=1

(
ψr+2ei − ψ̂r+2ei(g

′)
))

= Op(n−1g′2)

since ψr = O(1), ψ̂r(g′) = Op(1) and E ψ̂r(g′)− ψr = O(g′2) from Equation (2.3), |r| = 6.

Noting that g = O(n−2/(d+12)) and g′ = O(n−2/(d+16)), from Equation (2.7) with |r| = 6,

we have
ĝ − g

g
= Op(n−1n−4/(d+16))O(n) = Op(n−4/(d+16)).

For the SAMSE pilot, we start with, from Equation (2.10),

g = O

((
n
∑

r:|r|=4

d∑
i=1

ψr+2ei

)−1/(d+6))

and so

ĝ − g

g
= Op(ĝd+6 − gd+6)O(n)

= Op

(
n−1

( ∑
r:|r|=4

d∑
i=1

ψ̂r+2ei(g
′)
)−1

− n−1

( ∑
r:|r|=4

d∑
i=1

ψr+2ei

)−1)
O(n)

= Op

( ∑
r:|r|=4

d∑
i=1

(
ψr+2eiO(n)− ψ̂r+2ei(g

′)
))

= Op(g′2)

= Op(n−2/(d+8))

where g′ = O(n−1/(d+8)) in this case.

2.5 Practical performance of plug-in bandwidth selectors

The asymptotic properties of plug-in selectors were examined in the previous section. In

this section, we examine their finite sample properties.

2.5.1 Algorithms for plug-in bandwidth selectors

As the finite sample properties of bandwidth selectors do not admit a closed form analysis,

we use simulations instead. To perform the simulations, we need to specify the algorithms
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for the plug-in selectors i.e. the m-stage AMSE (diagonal and full) bandwidth matrices

of Wand & Jones (1994) and the m-stage SAMSE full bandwidth selectors. Before these

algorithms are employed, the data are usually pre-transformed. The plug-in bandwidth

matrix Ĥ∗
PI for the pre-sphered or pre-scaled data can be back transformed to the original

scale by ĤPI = S1/2Ĥ∗
PIS

1/2 or ĤPI = S1/2
D Ĥ∗

PIS
1/2
D .

Algorithm for m-stage AMSE bandwidth selectors

1. Set jmax = 2m + 4. Obtain normal reference estimates ψ̂NR
r for |r| = jmax. Plug

these estimates into the AMSE pilot bandwidths gr,AMSE, |r| = jmax−2.

2. For j = jmax − 2, jmax − 4, . . . , 6:

(a) Calculate kernel estimates of ψr functionals of order j = |r| using plug-in

estimate of gr,SAMSE, |r| = j.

(b) Substitute ψ̂r estimates into Equations (2.6) and (2.7) to give plug-in estimates

of gr,SAMSE, |r| = j − 2.

3. Employ gr,SAMSE, |r| = 4 to produce kernel estimate Ψ̂4. Plug this estimate into

Equation (1.5) to give PI(H).

4. To obtain required plug-in bandwidth matrix ĤPI,AMSE :

(a) If using diagonal bandwidth matrix and d = 2 then use

h1,AMISE =

[
ψ

3/4
04 R(K)

µ2(K)2ψ3/4
40 (ψ1/2

40 ψ
1/2
04 + ψ22)n

]1/6

h2,AMISE =

[
ψ

3/4
40 R(K)

µ2(K)2ψ3/4
40 (ψ1/2

40 ψ
1/2
40 + ψ22)n

]1/6

(b) Otherwise numerically minimise PI(H).

Algorithm for m-stage SAMSE bandwidth selectors

1. Set jmax = 2m + 4. Obtain normal reference estimates ψ̂NR
r for |r| = jmax. Plug

these estimates into the SAMSE pilot bandwidth gjmax−2,SAMSE.

2. For j = jmax − 2, jmax − 4, . . . , 6:

(a) Calculate kernel estimates of ψr functionals of order j = |r| using plug-in

estimate of gj,SAMSE.

(b) Substitute ψ̂r estimates into Equation (2.10) to give plug-in estimate of pilot

gj−2,SAMSE.
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3. Employ g4,SAMSE to produce kernel estimate Ψ̂4. Plug this estimate into Equation

(1.5) to give PI(H).

4. Numerically minimise PI(H) to obtain required plug-in bandwidth ĤPI,SAMSE.

The code for these bandwidth selectors (and all subsequent selectors developed in this

thesis) is written in R, R Development Core Team (2003), which is closely related to

Splus, Mathsoft (1999). In practice we employ a quasi-Newton (variable metric) method

of numerical minimisation at stage 4 of these algorithms, using the optim function in R. In

the simulation study we did not encounter any significant computational difficulties using

this approach. All the computer code is collected into an R library called ks. For more

details on the ks library, see Appendix C.

2.5.2 Simulation results for normal mixture densities

For our simulation study, we now move away from the general multivariate case to the

bivariate case, for the reasons stated earlier in Section 1.1 i.e. they are easily visualised on

a two dimensional page but have properties that are easily extended to higher dimensions.

To compare the performance of the plug-in bandwidth matrix selectors, we conduct a

simulation study on 6 mixture normal densities, labelled A to F. All but density F are taken

from Wand & Jones (1993). These were chosen as they exhibit a range of characteristics

that we wish to detect using a kernel density estimator. The formulas for these densities

are given in Table 2.3 and the contour plots are in Figure 2.1. Density A is a normal

density with diagonal covariance matrix so it is a base case. Density B is bimodal, though

its modes are not as widely separated as density C. The former has spherical components

whereas the latter has elliptical components. Densities similar to density C are well-known

to pose difficulties for kernel density estimators with fixed bandwidth matrices. Density

D has spherical and oblique elliptical components and is also known to be difficult to

estimate. Density E is trimodal, kurtotic with heavier tails. Density F is a rotated version

of density A. Densities D, E and F all have probability mass oriented at an angle to

the axes so they provide a testing ground whether full selectors are able to recover their

structure better than diagonal selectors.

The advantage of using normal mixtures as our target densities is that we can compute

exact, closed form ISE and MISE. Let f be a mixture normal density with m components,

with each component having mean µk, variance Σk and mixing proportion wk:

f(x) =
m∑

k=1

wkφΣk
(x− µk).
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Figure 2.1: Contour plots for target densities A – F
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Target
density Formula

A N

([
0
0

]
,

[
1
4 0
0 1

])
B 1

2N

([
1
0

]
,

[
4
9 0
0 4

9

])
+ 1

2N

([
−1
0

]
,

[
4
9 0
0 4

9

])
C 1

2N

([
3
2
0

]
,

[
1
16 0
0 1

])
+ 1

2N

([
− 3

2
0

]
,

[
1
16 0
0 1

])
D 1

2N

([
1
−1

]
,

[
4
9

14
45

14
45

4
9

])
+ 1

2N

([
−1
1

]
,

[
4
9 0
0 4

9

])
E 3

7N

([
−1
0

]
,

[
9
25

63
250

63
250

49
100

])
+ 3

7N

([
1
2√
3

]
,

[
9
25 0
0 49

100

])
+ 1

7N

([
1

− 2√
3

]
,

[
9
25 0
0 49

100

])
F N

([
0
0

]
,

[
1 9

10
9
10 1

])
Table 2.3: Formulas for target densities A – F

Then the ISE for a density estimate normal mixture kernels and with bandwidth H is

ISE f̂(·;H) = n−2
n∑

i=1

n∑
i′=1

φ2H(Xi −Xi′)− 2n−1
n∑

i=1

m∑
k=1

wkφH+Σk
(Xi − µk)

+
m∑

k=1

m∑
k′=1

wkwk′φΣk+Σk′ (µk − µk′).

Taking expected values, the MISE, as given by Wand & Jones (1995), is

MISE f̂(·;H) = n−1(4π)−d/2|H|−1/2 +
m∑

k=1

m∑
k′=1

wkwk′
[
(1− n−1)φ2H+Σk+Σk′ (µk − µk′)

− 2φH+Σk+Σk′ (µk − µk′) + φΣk+Σk′ (µk − µk′)
]
.

To assess the efficacy of our bandwidth selectors, we first find the MISE-optimal bandwidth

HMISE and compare it to ĤPI from our simulations. We then compute ISE(ĤPI) and

compare it to the MISE(HMISE).

The selectors were run for two sample sizes, n = 100 and 1000, each for 400 trials. For

each data set we constructed bivariate kernel density estimates using multivariate normal

kernels and bandwidth matrix selected using the following methods:

� Wand & Jones (1994) 2-stage plug-in diagonal bandwidth matrix selector, which we

label D2

� Wand & Jones (1994) 1-stage and 2-stage plug-in full bandwidth matrix selectors,

labelled F1 and F2 respectively;

� Plug-in bandwidth matrix selectors using our 1-stage and 2-stage SAMSE based

algorithm, labelled S1 and S2 respectively.
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Diagonal selectors start with ‘D’, AMSE full selectors with ‘F’ and SAMSE full selectors

with ‘S’. The number that follows the letter indicates the number of stages. All but the

diagonal bandwidth matrix selector were implemented using both pre-scaling and pre-

sphering of the data. We add an asterisk superscript to the method label to indicate the

latter type of transformation (e.g. F2∗).

It is possible for AMSE full (‘F’) selectors to produce a non-positive definite estimate

of Ψ4. The failure rate (as a percentage), classified by target density and sample size, is

in Table 2.4. First, the failure rates of both F1 and F2 selectors are not negligible (for

certain target densities) and will have implications for use in practical situations; as there

is usually only one set of values available, not obtaining a finite bandwidth matrix poses a

problem. Second, the failures occurred for the densities which are not oriented in parallel

to the coordinate axes. Third, the failure rates do not appear to decrease with increasing

sample size. The F1∗ and F2∗ selectors did not encounter such problems. Nonetheless we

must keep in mind that we have only considered six normal mixture densities and that it

remains theoretically possible for either of these selectors to fail for another density. This

seems likely only when the structure of the target density is very intricate. For example,

when f is composed of several components with long, thin elliptical contours at a variety

of orientations to the coordinate axes.

Target density
Selector A B C D E F
F1 n = 100 0.00 0.00 0.50 0.50 6.75 0.00

n = 1000 0.00 0.00 2.75 0.00 5.25 0.00
F2 n = 100 0.00 0.00 1.75 0.25 4.75 0.00

n = 1000 0.00 0.00 4.75 0.00 3.25 0.00

Table 2.4: Percentage failure rates for F1 and F2 selectors.

For brevity, we present only in this section the box plots of the log(ISE) in Figure 2.2

for n = 100 and in Figure 2.3 for n = 1000. In Appendix B, refer to Tables B.1 and B.2 for

the bandwidth matrix that attains the median ISE and Tables B.3 and B.4 for the means

and standard deviations of the ISE.

Looking at the box plots, we see that there is no uniformly best selector - the per-

formance of a selector depends largely on the target density shape. For densities A, B

and E, all the selectors have similar performance (although 2 stage selectors have a slight

advantage over their 1 stage counterparts for density E). For density C, the performance

of the 1-stage selectors is markedly worse than the 2-stage selectors. This target density

is clearly not well approximated by a single component normal density, and since the

1-stage pilot selectors depend heavily on the normality assumption, the resulting final

bandwidth is inadequate. In contrast, for the 2-stage pilot selectors, the dependence on
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Figure 2.2: Box plots of log(ISE) for plug-in selectors, sample size n = 100
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Figure 2.3: Box plots of log(ISE) for plug-in selectors, sample size n = 1000
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normality is mitigated with an extra stage of pilot functional estimation and the result-

ing final bandwidth is more appropriate. Pre-sphering is most detrimental for density D,

with S2∗ being the best of these. The reason that pre-sphered selectors perform badly

here is that sphering corrupts important structure of the data: the overall correlation is

−0.58 while the individual components have correlation zero and 0.7. For density F, the

situation is the reverse for density D, the pre-sphered selectors outperform the pre-scaled

selectors. This is expected as the density is aligned 45 degrees to the coordinate axes. We

note that D2 does poorly with this target density: its performance could be improved by

pre-sphering in this case. However, we are reminded by Wand & Jones (1993) that the

implementation of a diagonal bandwidth matrix selector with pre-sphering is not generally

advisable. This final comment is worth emphasising since it has important considerations

in practice. The pre-sphering transformation uses the overall covariance structure of the

data which may be different to the local covariance structure of certain regions (e.g. den-

sity D). If pre-sphering is combined with a diagonal bandwidth matrix, this can lead to

situations where the smoothing in these regions will be in inappropriate directions since

diagonal bandwidth matrices are not able induce kernel orientations other than parallel

to the coordinate axes.

2.5.3 Results for real data

We analyse the ‘Old Faithful’ geyser data set from Simonoff (1996) (amongst many others).

It consists of pairs of an eruption duration time and the time till the next eruption, both

in minutes, of the ‘Old Faithful’ geyser in Yellowstone National Park, USA. They were

collected from 222 eruptions from August 1978 to August 1979. This dataset has structure

that is not oriented parallel to the axes so it is a good test case to compare full bandwidth

selectors to diagonal selectors. The estimates of the bandwidth selectors are in Table 2.5.

F1∗ F1 S1∗ S1»
0.0319 0.0410
0.0410 6.428

– »
0.1086 0.9347
0.9347 12.18

– »
0.0761 0.7192
0.7192 14.022

– »
0.0321 0.0466
0.0466 6.442

–
-

F2∗ F2 S2∗ S2 D2»
0.0811 0.6395
0.6395 8.186

– »
0.0260 0.0280
0.0280 5.704

– »
0.0565 0.5604
0.5604 10.503

– »
0.0284 0.0277
0.0277 10.503

– »
0.0282 0

0 5.211

–
Table 2.5: Plug-in bandwidth matrices for ‘Old Faithful’ geyser data

The contour plots of the kernel density estimates for the 1-stage and 2-stage selectors

are in Figures 2.4 and 2.5 respectively. We can see that using the pre-sphering with full

selectors produce kernel density estimates that are similar to each other; whereas using

pre-scaling with full or diagonal selectors produce kernel density estimates that are similar

to each other. The latter group of methods provide density estimates in which the lower
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left mode runs almost parallel to the waiting time axis. For the pre-sphered methods the

orientation of this mode is at a marked angle to this axis. We also note that the elements

of the bandwidth matrices are larger for the pre-sphered methods than the pre-scaled ones,

producing smoother estimates.

Figure 2.4: ‘Old Faithful’ geyser data contour plots - 1-stage plug-in selectors

Another data set that we analyse is taken from UNICEF (2003) (United Nations

Children’s Fund). It contains measurements of the under 5 (years of age) child mortality

rate, i.e. the number of children under 5 dying per 1000 live births, and the expected life

expectancy at birth (in years) for 73 countries. These countries have GNI (Gross National

Income) of less than $US 1000 per person per year. From the analysis of the ‘Old Faithful’

geyser data, we recommend (at least) 2 stages of pilot estimation so we only produce

estimates from these selectors in Table 2.6.

This dataset has probability mass oriented to the axes, though it is at a different angle

to the ‘Old Faithful’ geyser data. We again expect that the full bandwidth selectors will

be able to detect this obliqueness whereas the diagonal selector will not. This is verified
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Figure 2.5: ‘Old Faithful’ geyser data contour plots - 2-stage plug-in selectors
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F2∗ F2 S2∗ S2 D2»
805.8 −99.40
−99.40 17.33

– »
237.7 −15.34
−15.3 7.232

– »
797.6 −106.6
−106.6 19.57

– »
245.8 −11.07
−11.07 6.674

– »
201.0 0

0 6.243

–
Table 2.6: Plug-in bandwidth matrices for child mortality-life expectancy data

by the contour plots of the corresponding kernel density estimates in Figure 2.6. The plots

for D2, F2, S2 appear to have several spurious features, with D2 being the most noisy

whereas the plots for F2∗ and S2∗ are smoother.

2.6 Conclusion

Using a diagonal bandwidth matrix restricts us to using kernels that are aligned to the

co-ordinate axes. In situations where the data are not oriented parallel to the co-ordinate

axes using a full bandwidth matrix is more appropriate. We modified the existing pilot

bandwidth selection stages for plug-in selectors, from an element-wise (AMSE pilots) pro-

cedure to a matrix-wise (SAMSE pilots) procedure. The SAMSE procedure is guaranteed

to produce a finite pilot bandwidth and is more parsimonious. We derived the asymptotic

properties for these plug-in selectors as well as looking at their finite sample behaviour. It

appears 2 stages of pilot estimation along with pre-sphering (S2∗ and F2∗) are the best

overall strategies (though we recall that the S2∗ is simpler to implement.) Moreover, they

are both better than D2 which is currently the most widely used plug-in selector.
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Figure 2.6: Child mortality-life expectancy data contour plots - 2-stage plug-in selectors
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Chapter 3

Cross validation bandwidth
selectors

3.1 Introduction

Cross validation selectors are the main alternative to plug-in selectors. Cross valida-

tion selectors are widely used in univariate kernel density estimation and, in a restricted

way, in multivariate kernel density estimation. For the univariate case, like their plug-in

counterparts, we have already a solid understanding of the performance of the cross vali-

dation selectors. There are three main types of cross-validation: least squares, biased and

smoothed. Biased cross validation is dependent on the AMISE so its performance depends

on the AMISE being appropriate approximation for the MISE. Least squares cross valida-

tion is not subject to this condition, though it has been shown to be more variable than

other selectors in the univariate setting. These two cross validation methods are slower in

terms of convergence rates than plug-in selectors. Smoothed cross validation, on the other

hand, has convergence rate and variability that are comparable to plug-in selectors. It

achieves this by using an exact estimate of the bias rather than relying on its asymptotic

approximation.

In Chapter 2, we extended the existing diagonal plug-in selectors to full selectors.

We attempt a similar extension for the cross validation selectors in this chapter. To

generalise least squares and biased cross validation is fairly straightforward, as is shown

in Sections 3.2 and 3.3. They are straightforward primarily because they do not require

independent pilot bandwidths. However smoothed cross validation selectors do require

independent pilot bandwidths: to generalise the selection of these pilot bandwidths is not

trivial and is the main theoretical result of this chapter. See Section 3.4. Asymptotic

relative convergence rates are computed, within each section, using the mathematical

machinery developed in the previous chapter. The analysis of a simulation study and real

data sets is used to compare finite sample properties in Section 3.5.
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3.2 Least squares cross validation

The multivariate version of the least squares cross validation (LSCV) criterion is a straight-

forward generalisation of the univariate form devised by Rudemo (1982) and Bowman

(1984):

LSCV(H) =
∫

Rd
f̂(x;H)2 dx− 2n−1

n∑
i=1

f̂−i(Xi;H)

where the leave-one-out estimator is

f̂−i(x;H) = (n− 1)−1
n∑

j=1
j 6=i

KH(x−Xj).

The LSCV selector ĤLSCV is the minimiser of LSCV(H). This criterion attempts to esti-

mate the MISE in a fairly directly manner since E LSCV(H) = MISE f̂(·;H)−R(f). Due

to its unbiasedness, the LSCV selector is sometimes called the unbiased cross validation

(UCV) selector. The LSCV can be expanded to give:

LSCV(H)

= n−2
n∑

i=1

n∑
j=1

(KH ∗KH)(Xi −Xj)− 2n−1(n− 1)−1
n∑

i=1

n∑
j=1
j 6=i

KH(Xi −Xj)

= n−1R(K)|H|−1/2 + n−1(n− 1)−1
n∑

i=1

n∑
j=1
j 6=i

(KH ∗KH − 2KH)(Xi −Xj). (3.1)

(From this expression, we will see later that this is a special case of the smoothed cross

validation criterion in Section 3.4.) For normal kernels, this expression simplifies further

since φH ∗ φH = φ2H :

LSCV(H) = n−1(4π)−d/2|H|−1/2 + n−1(n− 1)−1
n∑

i=1

n∑
j=1
j 6=i

(φ2H − 2φH)(Xi −Xj). (3.2)

Some research has been carried out by Sain et al. (1994) on multivariate LSCV se-

lectors. However they use only product kernels which is equivalent to using a diagonal

bandwidth matrix with spherically symmetric kernels. These authors computed the rel-

ative rates of convergence for the diagonal selector which we now replicate for the full

selector.

We follow our strategy in Section 2.3 to find the relative convergence rate for ĤLSCV to

HAMISE. To find ABias(vech ĤLSCV) and AVar(vech ĤLSCV) we need the expected value

and variance of DH(LSCV −AMISE)(HAMISE), calculated in Lemmas 7 and 8.

48



3.2. LEAST SQUARES CROSS VALIDATION

Lemma 7. Assume A1 – A2 of the AMSE Lemma (Lemma 3), and that K is normal.

Then

ABias(vech ĤLSCV) = O(Jd′n
−2/(d+4)) vechHAMISE

Proof. A higher order expansion of the MISE is

MISE f̂(·;H) = AMISE f̂(·;H) + 1
8

∫
Rd

tr(HD2f(x)) tr(H2(D2)2f(x)) dx (3.3)

+ o(‖vechH‖3)

where D2 is the Hessian operator with respect to the free variable x, so (D2)2 is obtained

by ‘multiplying’ the Hessian operator with itself. This means that (D2)2 is matrix of

fourth order partial differential operators.

As E LSCV(H) = MISE f̂(·;H) − R(f), and swapping the order of expectation and

differentiation, yields

E[DH(LSCV −AMISE)(H)]

= DH[E(LSCV −AMISE)(H)]

= DH

[
−R(f)− 1

8

∫
Rd

tr(HD2f(x)) tr(H2(D2)2f(x)) dx+ o(‖vechH‖3)
]

= −1
8

∫
Rd

tr(H2(D2)2f(x))DT
d vecD2f(x) dx

− 1
4

∫
Rd

tr(HD2f(x))DT
d vec(H(D2)2f(x)) dx+ o(‖vechH‖vechH)

as DH tr(AH) = DT
d vecA andDH tr(AH2) = DT

d vec(HA) for a matrix A of appropriate

dimensions. So ABias(vech ĤLSCV) is O(Jd′n
−2/(d+4)) vechHAMISE.

Lemma 8. Assume A1 – A2 of AMSE Lemma (Lemma 3), and that K is normal. Then

AVar(vech ĤLSCV) = O(Jd′n
−d/(d+4))(vechHAMISE)(vechT HAMISE).

Proof. For the asymptotic variance, we start with

Var[DH(LSCV −AMISE)(HAMISE)]

= Var[DHLSCV(HAMISE)]

= Var
[
n−1(n− 1)−1

n∑
i=1

n∑
j=1
j 6=i

DH(φ2H − 2φH)(Xi −Xj)
]

= Var
[
n−2

n∑
i=1

n∑
j=1
j 6=i

(ϕ2H −ϕH)(Xi −Xj)
]
[1 + o(n−1)]
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where

ϕA(X) = φA(X)DT
d vec(A−1XXTA−A−1). (3.4)

We use this ϕ function because it is related to the derivative of the normal density via

DHφaH(x) = 1
2aϕaH(x). As ϕ2H−ϕH is a symmetric function, the variance simplifies to

Var[DH(LSCV −AMISE)(H)] = 2n−2 Var[(ϕ2H −ϕH)(X1 −X2)]

+ 4n−1 Cov[(ϕ2H −ϕH)(X1 −X2), (ϕ2H −ϕH)(X2 −X3)].

The first term of Var[DH(LSCV −AMISE)(H)] comprises

Var[(ϕ2H −ϕH)(X1 −X2)] = E
{

[(ϕ2H −ϕH)(X1 −X2)] [(ϕ2H −ϕH)(X1 −X2)]
T
}

− [E(ϕ2H −ϕH)(X1 −X2)] [E(ϕ2H −ϕH)(X1 −X2)]
T .

We have that E{(ϕ2H −ϕH)(X1 −X2)[(ϕH −ϕH)(X1 −X2)]T } contains expressions of

the type

E{φaH(X1 −X2)DT
d vec[(aH)−1(X1 −X2)(X1 −X2)T (aH)−1 − (aH)−1]

× φbH(X1 −X2) vecT [(bH)−1(X1 −X2)(X1 −X2)T (bH)−1 − (bH)−1]Dd}. (3.5)

To simplify this expression, we note that φaH(x)φbH(x) = (2π)−d/2|(a+ b)H|−1/2φa′H(x)

where a′ = ab/(a+ b):

E{φaH(X1 −X2)DT
d vec[(aH)−1(X1 −X2)(X1 −X2)T (aH)−1 − (aH)−1]

× φbH(X1 −X2) vecT [(bH)−1(X1 −X2)(X1 −X2)T (bH)−1 − (bH)−1]Dd}

= O(Jd′ |H|−1/2)
∫

R2d
φa′H(x− y)DT

d vec[(aH)−1(x− y)(x− y)T (aH)−1 − (aH)−1]

× vecT [(bH)−1(x− y)(x− y)T (bH)−1 − (bH)−1]Ddf(x)f(y) dxdy

= O(Jd′ |H|−1/2)
∫

R2d
φI(w)DT

d vec[a−2a′H−1/2wwTH−1/2 − a−1H−1]

× vecT [b−2a′H−1/2wwTH−1/2 − b−1H−1]Ddf(y + (a′H)1/2w)f(y) dwdy

= O(Jd′ |H|−1/2)
∫

R2d
φI(w)DT

d vec[a−2a′H−1/2wwTH−1/2 − a−1H−1]

× vecT [b−2a′H−1/2wwTH−1/2 − b−1H−1]Dd[f(y) + o(1)]f(y) dwdy

= O(Jd′ |H|−1/2)(vechH−1)(vechT H−1).

To completely determine an order expression for Var[(ϕ2H −ϕH)(X1 −X2)], we find

that

E(ϕ2H −ϕH)(X1 −X2) = DH[E(φ2H − 2φH)(X1 −X2)]

= DH

[
1
4

∫
Rd

tr(H2(D2)2f(y))f(y) dy + o(‖vechH‖2)
]

= 1
2

∫
Rd

DT
d vec(H(D2)2f(y))f(y) dy + o(vechH)
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since

EφaH(X1 −X2) =
∫

R2d
φaH(x− y)f(x)f(y) dxdy

=
∫

R2d
φI(w)f(y + (aH)1/2w)f(y) dwdy

=
∫

Rd

[
f(y) + 1

2a tr(HD2f(y)) + 1
8a

2 tr(A2(D2)2f(y))
]
f(y) dy

+ o(‖vechH‖2).

so that

[E(ϕ2H −ϕH)(X1 −X2)][E(ϕ2H −ϕH)(X1 −X2)]T = O(Jd′)(vechH)(vechT H)

and thus

Var[(ϕ2H −ϕH)(X1 −X2)] = O(Jd′ |H|−1/2)(vechH−1)(vechT H−1). (3.6)

The second term of Var[DH(LSCV −AMISE)(H)] comprises

Cov[(ϕ2H −ϕH)(X1 −X2), (ϕ2H −ϕH)(X2 −X3)]

= E
{

[(ϕ2H −ϕH)(X1 −X2)] [(ϕ2H −ϕH)(X2 −X3)]
T
}

− [E(ϕ2H −ϕH)(X1 −X2)] [E(ϕ2H −ϕH)(X2 −X3)]
T .

We have already derived an order expression for the latter term in this covariance. The

former term E{(ϕ2H −ϕH)(X1 −X2)[(ϕ2H −ϕH)(X2 −X3)]T } contains expressions of

the type

E{φaH(X1 −X2)DT
d vec[(aH)−1(X1 −X2)(X1 −X2)T (aH)−1 − (aH)−1]

× φbH(X2 −X3) vecT [(bH)−1(X2 −X3)(X2 −X3)T (bH)−1 − (bH)−1]Dd}.

We can simplify this expression:∫
R3d

φaH(x− y)DT
d vec[(aH)−1(x− y)(x− y)T (aH)−1 − (aH)−1]

× φbH(y − z) vecT [(bH)−1(y − z)(y − z)T (bH)−1 − (bH)−1]Ddf(x)f(y)f(z) dxdydz

=
∫

R3d
φI(v)DT

d vec[(aH)−1/2vvT (aH)−1/2 − (aH)−1]

× φI(w) vecT [(bH)−1/2wwT (bH)−1/2 − (bH)−1]

× f(y + (aH)1/2v)f(y)f(y − (bH)1/2w) dvdwdy

=
∫

R3d
φI(v)DT

d vec[(aH)−1/2vvT (aH)−1/2 − (aH)−1]

× φI(w) vecT [(bH)−1/2wwT (bH)−1/2 − (bH)−1]

× [f(y) +O(‖vechH‖)]f(y)[f(y) +O(‖vechH‖)] dvdwdy

= O(Jd′)(vechH)(vechT H)
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which means that

Cov[(ϕ2H −ϕH)(X1 −X2), (ϕ2H −ϕH)(X2 −X3)] = O(Jd′)(vechH)(vechT H).

Combining the expression for this covariance with Equation (3.6) yields,

Var[DH(LSCV −AMISE)(HAMISE)]

= O(Jd′n
−2|HAMISE|−1/2)(vechH−1

AMISE)(vechT H−1
AMISE)

+O(Jd′n
−1)(vechHAMISE)(vechT HAMISE)

= O(Jd′n
−d/(d+4))(vechHAMISE)(vechT HAMISE)

as HAMISE = O(Jd′n
−2/(d+4)). Moreover, as D2

HAMISE(HAMISE) = O(Jd) then the result

follows.

The relative rate of convergence of the LSCV selector is obtained by combining the

AMSE Lemma with Lemmas 7 and 8 to give Theorem 2.

Theorem 2. Under the conditions of Lemmas 7 and 8 the relative rate of convergence of

ĤLSCV to HAMISE is n−min(d,4)/(2d+8).

The rate from Theorem 2 is for full bandwidth selectors. The rate remains the same

for diagonal or h2I selectors. Table 3.1 is an augmented version of Table 2.2 as we add

the rate for the LSCV selector. The rate for the SAMSE plug-in selectors is faster than

the LSCV for d ≤ 3. For d > 3, the situation is reversed. For AMSE plug-in selectors

it is much the same except that the change over point is at d = 4. The discrepancy of

HAMISE and HMISE is dominated by the rate of the LSCV selector for d ≤ 3. So for these

dimensions, the rate of ĤLSCV to HMISE and to HAMISE are the same. For d ≥ 4, since

the rate of HAMISE −HMISE and rate of the LSCV selector to HAMISE are the same, it

is not possible to ascertain directly the rate of convergence of ĤLSCV to HMISE from this

table.

Convergence rate to HAMISE

Selector d d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

ĤPI,AMSE (diagonal) n−min(8,d+4)/(2d+12) n−5/14 n−3/8 n−7/18 n−2/5 n−4/11 n−1/3

ĤPI,AMSE n−4/(d+12) n−4/13 n−2/7 n−4/15 n−1/4 n−4/17 n−2/9

ĤPI,SAMSE n−2/(d+6) n−2/7 n−1/4 n−2/9 n−1/5 n−2/11 n−1/6

ĤLSCV n−min(d,4)/(2d+8) n−1/10 n−1/6 n−3/14 n−1/4 n−2/9 n−1/5

HAMISE −HMISE n−2/(d+4) n−2/5 n−1/3 n−2/7 n−1/4 n−2/9 n−1/5

Table 3.1: Comparison of convergence rates
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3.3 Biased cross validation

The LSCV selector relies on estimating the MISE. The approach taken by the biased cross

validation (BCV) selector relies on estimating the AMISE:

AMISE f̂(·;H) = n−1R(K)|H|−1/2 + 1
4µ2(K)2(vechT H)Ψ4(vechH).

As for the plug-in selectors in Chapter 2, we need to estimate Ψ4. Plug-in methods use a

pilot bandwidth matrix/matrices that is/are independent of H. For BCV, we set G = H

and use slightly different estimators. Since AMISE is a biased estimator of MISE then

we expect that BCV is also biased for the MISE (although it is asymptotically unbiased).

This gives BCV its name: the bias is introduced in an attempt reduce the variance.

There are two versions of BCV, depending on the estimator of ψr, |r| = 4, see Sain

et al. (1994), Jones & Kappenman (1992). We can use

ψ̌r(H) = n−2
n∑

i=1

n∑
j=1
j 6=i

(K(r)
H ∗KH)(Xi −Xj) (3.7)

or we could use

ψ̃r(H) = n−1
n∑

i=1

f̂
(r)
−i (Xi;H) = n−1(n− 1)−1

n∑
i=1

n∑
j=1
j 6=i

K
(r)
H (Xi −Xj). (3.8)

The motivation of ψ̃r is fairly straight forward from its definition and follows from the

fact that it is a sample mean of the f̂ (r)
−i (Xi;H) and that ψr = E f (r)(X). The motivation

of ψ̌r is given by replacing f in ψr =
∫

Rd f (r)(x)f(x) dx with f̂−i(Xi;H) and then taking

the sample mean. (This was shown in Section 1.3.) We use these, rather than the leave-

in-diagonals estimator of Chapter 2, as we no longer seek to annihilate the contribution

from the non-stochastic terms with the leading term of the leave-out-diagonals double

sum. The estimates Ψ̌4 and Ψ̃4 are obtained from Ψ4 by substituting ψ̌r and ψ̃r for ψr.

The BCV1 function is the version of BCV with Ψ̌4

BCV1(H) = n−1R(K)|H|−1/2 + 1
4µ2(K)2(vechT H)Ψ̌4(vechH) (3.9)

and the BCV2 function is the version with Ψ̃4

BCV2(H) = n−1R(K)|H|−1/2 + 1
4µ2(K)2(vechT H)Ψ̃4(vechH). (3.10)

The BCV selectors ĤBCV are the minimisers of the appropriate BCV function. Sain

et al. (1994) have conducted some research into diagonal BCV selectors. These authors

computed the relative rates of convergence for the diagonal selector which we now replicate

for the full selector.
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The two estimators ψ̌r and ψ̃r are fairly similar to each other. If we use the normal

kernel then we have φ(r)
H ∗ φH = (−1)|r|φ(r)

2H so the only difference is ψ̌r uses 2H and ψ̃r

uses H. This difference does not affect the relative convergence rates as it does not affect

the order of the asymptotic bias and variance. Thus we only need to find rates for BCV2

(the 2 will be dropped in the following calculations for clarity.) Lemma 9 contains the

result for the asymptotic bias and Lemma 10, the asymptotic variance.

Lemma 9. Assume A1 – A3 of the AMSE Lemma (Lemma 3). Then

ABias(vech ĤBCV) = O(Jd′n
−2/(d+4)) vechHAMISE.

Proof. We start with

(BCV −AMISE)(H) = 1
4(vechT H)(Ψ̃4(H)−Ψ4)(vechH)[1 + op(1)]

then

E(BCV −AMISE)(H) = 1
4(vechT H)(E Ψ̃4(H)−Ψ4)(vechH)[1 + o(1)].

Now, E Ψ̃4(H)−Ψ4 and is composed of elements of the type E ψ̃r(H)− ψr. As

E ψ̃r(H)− ψr = 1
2

∫
Rd

tr(HD2f(x))f (r)(x) dx

thus E(BCV −AMISE)(H) = O(‖vechH‖3) and

E[DH(BCV −AMISE)(HAMISE)] = O(Jd′n
−2/(d+4)) vechHAMISE.

Lemma 10. Assume A1 – A2 of the AMSE Lemma (Lemma 3), and that K is normal.

Then

AVar(vech ĤBCV) = O(Jd′n
−d/(d+4))(vechHAMISE)(vechT HAMISE).

Proof. Let y = vechH and A(y) = Ψ̃4(H). We have

d(yTA(y)y) = d(yTA(y))y + yTA(y) dy

= [(dyT )A(y) + yTdA(y)]y + yTA(y) dy

= 2yTA(y) dy + vecT (yyT ) d vecA(y).

Then using the first identification table of Magnus & Neudecker (1988, p. 176) the deriva-

tive is

Dy(yTA(y)y) = 2A(y)y + [DyA(y)]T vec(yyT )

= 2A(y)y + [DyA(y)]T (y ⊗ Id′)y
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where ⊗ is the Kronecker (or tensor) product between two matrices. Using this, the

derivative of BCV −AMISE is

DH(BCV −AMISE)(H)

= DH[14(vechT H)(Ψ̃4(H)−Ψ4)(vechH)]

= 1
2(Ψ̃4(H)−Ψ4)(vechH) + 1

4 [DHΨ̃4(H)]T (vechH⊗ Id′)(vechH).

Then the variance of DH(BCV − AMISE)(H) will be of the same rate as the minimum

rate of Var[Ψ̃4(H)(vechH)] and Var{[DHΨ̃4(H)]T (vechH⊗ Id′)}.
The first of these is

Var[Ψ̃4(H)(vechH)] = E[Ψ̃4(H)(vechH)(vechT H)Ψ̃4(H)]

− [E Ψ̃4(H)(vechH)][(vechT H) E Ψ̃4(H)].

Now E[Ψ̃4(H)Ψ̃4(H)]− [E Ψ̃4(H)][E Ψ̃4(H)] contains elements of the type

E[ψ̃r1(H)ψ̃r2(H)]− [E ψ̃r1(H)][E ψ̃r2(H)] = Cov[ψ̃r1(H), ψ̃r2(H)]

= O(min{Var ψ̃r1(H),Var ψ̃r2(H)}).

We know that Var ψ̃r(H) = O(n−2|H|1/2‖vechH‖−|r|) if n−2|H|−1/2 ‖vechH‖−|r|→ 0 as

n→∞. This is true for H = O(Jdn
−2/(d+4)) and |r| = 4. Thus we have

Var[Ψ̃4(HAMISE)(vechHAMISE)] = O(Jd′n
−d/(d+4))(vechHAMISE)(vechT HAMISE).

(3.11)

The second term is

Var{[DHΨ̃4(H)]T (vechH⊗ Id′)(vechH)}

= E{[DHΨ̃4(H)]T (vechH⊗ Id′)(vechH)(vechT H)(vechT H⊗ Id′)DHΨ̃4(H)}

− E[DHΨ̃4(H)]T (vechH⊗ Id′)(vechH)(vechT H)(vechT H⊗ Id′) E[DHΨ̃4(H)].
(3.12)

Finding the order of this variance is non-trivial and involves a long sequence of matrix

calculus computations. The main component of the variance is

E[DHΨ̃4(H)]T [DHΨ̃4(H)]− E[DHΨ̃4(H)]T E[DHΨ̃4(H)]

(if we temporarily ignore the contribution from vechH ⊗ Id′) and it contains blocks of

elements of the type∑
r:|r|=4

E{[DHψ̃r(H)][DHψ̃r(H)]T } − E[DHψ̃r(H)] E[DHψ̃r(H)]T

=
∑

r:|r|=4

VarDHψ̃r(H)

=
∑

r:|r|=4

Var
[
n−1(n− 1)−1

n∑
i=1

n∑
j=1
j 6=i

DHφ
(r)
H (xi −Xj)

]
. (3.13)
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The derivative of φ(r)
H with respect to vech H is

DHφ
(r)
H (x) =

∂|r|

∂xr1
1 . . . ∂xrd

d

DHφH(x)

=
∂|r|

∂xr1
1 . . . ∂xrd

d

1
2φH(x)DT

d vec[H−1xxTH−1 −H−1]

= 1
2φ

(r)
H (x)DT

d vec[H−1xxTH−1]

+ 1
2φH(x)DT

d vec
[
H−1 ∂|r|

∂xr1
1 . . . ∂xrd

d

(xxT )H−1

]
− 1

2φ
(r)
H (x)DT

d vecH−1.

For |r| = 4,
n∑

i=1

n∑
j=1
j 6=i

φH(Xi −Xj)
∂|r|

∂xr1
1 . . . ∂xrd

d

[(Xi −Xj)(Xi −Xj)T ] =
n∑

i=1

n∑
j=1
j 6=i

φH(Xi −Xj)C0

where

C0 =

{
2Ekk + 2E`` if r = 2ek + 2e`, k, ` = 1, 2 . . . , d
0 otherwise

and Eij is a d′× d′ elementary matrix which has 1 as its (i, j)-th element and 0 elsewhere.

So then

[n(n− 1)]−1
n∑

i=1

n∑
j=1
j 6=i

DHφ
(r)
H (Xi −Xj)

= 1
2D

T
d (H−1 ⊗H−1) vec ψ̃[2]

r (H) + 1
2 ψ̃0(H)DT

d (H−1 ⊗H−1) vecC0

− 1
2 ψ̃r(H)DT

d vecH−1 (3.14)

using vec(ABC) = (CT ⊗A) vecB and where

vec ψ̃[2]
r (H) = n−1(n− 1)−1

n∑
i=1

n∑
j=1
j 6=i

φ
(r)
H (Xi −Xj) vec[(Xi −Xj)(Xi −Xj)T ].

Now the order of the variance of the left hand side of Equation (3.14) is the minimum

order of the three terms on the right hand side. Since we know that Var ψ̃r(H) =

O(n−2|H|−1/2‖vechH‖−|r|) so the second term of the right hand side is

Var[ψ̃r(HAMISE)DT
d vecH−1

AMISE]

= O(Jd′n
−2|HAMISE|−1/2‖vechHAMISE‖−4)(vechHAMISE)(vechT HAMISE)

= O(Jd′n
(−d+4)/(d+4)) (3.15)

and the third term is

Var[ψ̃0(HAMISE)DT
d (H−1

AMISE ⊗H−1
AMISE) vecC0]

= O(Jd′n
−2|HAMISE|−1/2)(vechH−2

AMISE)(vechT H−2
AMISE)

= O(Jd′n
−d/(d+4)). (3.16)
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What remains is the first term of the right hand side of Equation (3.14): as the

summand of the double sum of vec ψ̃[2]
r (H) is a symmetric function so

Var vec ψ̃[2]
r (H) = 2n−2 Varφ(r)

H (X1 −X2) vec[(X1 −X2)(X1 −X2)T ]

+ 4n−1 Cov{φ(r)
H (X1 −X2) vec[(X1 −X2)(X1 −X2)T ],

φ
(r)
H (X2 −X3) vecT [(X2 −X3)(X2 −X3)T ]}.

The first term of Var vec ψ̃[2]
r (H) is

Var{φ(r)
H (X1 −X2) vec[(X1 −X2)(X1 −X2)T ]}

= O(Jd2 |H|−1/2‖vechH‖−|r|)(vecH)(vecT H). (3.17)

We obtain this expression by considering E{φ(r)
H (X1 −X2) vec[(X1 −X2)(X1 −X2)T ]}

first

E{φ(r)
H (X1 −X2) vec[(X1 −X2)(X1 −X2)T ]}

=
∫

R2d
φ

(r)
H (x− y) vec[(x− y)(x− y)T ]f(x)f(y) dxdy

=
∫

R2d
φH(x− y) vec[(x− y)(x− y)T ]f(x)f (r)(y) dxdy

=
∫

R2d
φI(w) vec(H1/2wwTH1/2)f(y + H1/2w) dwdy

=
∫

R2d
φI(w) vec(H1/2wwTH1/2)[f(y) +O(‖vechH‖)] dwdy

= ψr vecH +O(‖vechH‖) vecH;

and next

E{φ(r)
H (X1 −X2)2 vec[(X1 −X2)(X1 −X2)T ] vecT [(X1 −X2)(X1 −X2)]}

=
∫

R2d
φ

(r)
H (x− y)2 vec[(x− y)(x− y)T ] vecT [(x− y)(x− y)T ]f(x)f(y) dxdy

=
∫

R2d
[|H|−1/2φ

(r)
I (H−1/2(x− y))O(Jd2‖vechH‖−|r|/2)]2 vec[(x− y)(x− y)T ]

× vecT [(x− y)(x− y)T ]f(x)f(y) dxdy

= O(Jd2 |H|−1/2‖vechH‖−|r|)
∫

R2d
φ

(r)
I (w)2 vec(H1/2wwTH1/2)

× vecT (H1/2wwTH1/2)f(y + H1/2w)f(y) dwdy

= O(Jd2 |H|−1/2‖vechH‖−|r|)
∫

R2d
φ

(r)
I (w)2(H1/2 ⊗H1/2) vec(wwT ) vecT (wwT )

× (H1/2 ⊗H1/2)[f(y) + o(1)]f(y) dwdy

= O(Jd2 |H|−1/2‖vechH‖−|r|)(vecH)(vecT H).

Combining these two previous expressions gives Equation (3.17) as stated.
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The second term of Var vec ψ̃[2]
r (H) is

Cov{φ(r)
H (X1 −X2) vec[(X1 −X2)(X1 −X2)T ],

φ
(r)
H (X2 −X3) vecT [(X2 −X3)(X2 −X3)T ]} = O(Jd2)(vecH)(vecT H). (3.18)

This is because

E{φ(r)
H (X1 −X2) vec[(X1 −X2)(X1 −X2)T ]

× φ
(r)
H (X2 −X3) vecT [(X2 −X3)(X2 −X3)T ]}

=
∫

R3d
φ

(r)
H (x− y) vec[(x− y)(x− y)T ]φ(r)

H (y − z) vecT [(y − z)(y − z)T ]

× f(x)f(y)f(z) dxdydz

=
∫

R3d
φH(x− y) vec[(x− y)(x− y)T ]φH(y − z) vecT [(y − z)(y − z)T ]

× f (r)(x)f (r)(y)f(z) dxdydz

=
∫

R3d
φI(v)φI(w) vec(H1/2vvTH1/2) vecT (H1/2wwTH1/2)

× f (r)(y + H1/2w)f (r)(y)f(y −H1/2w) dvdwdy

= O(Jd2)(vecH)(vecT H)

is the same order as the product of E{φ(r)
H (X1 −X2) vec[(X1 −X2)(X1 −X2)T ]} and

E{φ(r)
H (X2 −X3) vecT [(X2 −X3)(X2 −X3)T ]}.
The expression for the order of Var vec ψ̃[2]

r (H) is a result of combining Equations

(3.17) and (3.18)

Var[DT
d (H−1

AMISE ⊗H−1
AMISE) vec ψ̃[2]

r (HAMISE)]

= O(Jd′n
−2|HAMISE|−1/2‖vechHAMISE‖−4)(vechH−2

AMISE)(vechT H−2
AMISE)

+O(Jd′n
−1)(vechHAMISE)(vechT HAMISE)

= O(Jd′n
(−d+4)/(d+4)). (3.19)

Equations (3.15), (3.16) and (3.19) combine to give the variance of Equation (3.14):

Var
[
n−1(n− 1)−1

n∑
i=1

n∑
j=1
j 6=i

DHφ
(r)
H (Xi −Xj)

]
= O(Jd′n

(−d+4)/(d+4)).

This implies that expressions of the type in Equation (3.13) are of the same order, which

in turn implies that Equation (3.12) becomes

Var{[DHΨ̃4(HAMISE)]T (vechHAMISE ⊗ Id′)(vechHAMISE)}

= O(Jd′n
(−d+4)/(d+4))[(vechHAMISE)(vechT HAMISE)]2

= O(Jd′n
−d/(d+4))(vechHAMISE)(vechT HAMISE).
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This is the same order as Var[Ψ̃4(HAMISE)(vechHAMISE)], Equation (3.11). The order

of Var[DH(BCV −AMISE)(H)] is the minimum order of Equations (3.11) and (3.12) i.e.

Var[DH(BCV −AMISE)(H)] = O(Jd′n
−d/(d+4))(vechHAMISE)(vechT HAMISE).

The relative rate of convergence of the BCV selectors is obtained by combining the

AMSE Lemma with Lemmas 9 and 10 to give Theorem 3.

Theorem 3. Under the conditions of Lemmas 9 and 10 the relative rate of convergence

of ĤBCV to HAMISE is n−min(d,4)/(2d+8).

This rate is identical to the rate of the LSCV selector. Sain et al. (1994) give the rate

for the BCV selector to be n−d/(2d+8). This seems incorrect for d > 4 as the squared bias

term dominates the variance term in these dimensions. In particular, their claim that the

BCV convergence rate tends to n−1/2 as d increases (which implies that its performance

increases as d increases) appears to be invalid. The proof of Sain et al. does not keep

proper track of second order bias terms which should lead to an additional term of order

h5 in their Equation (15).

3.4 Smoothed cross validation

Smoothed cross validation (SCV) can be thought of as a hybrid of LSCV and BCV.

The SCV criterion takes the asymptotic integrated variance but attempts to estimate the

integrated squared bias exactly rather than using its asymptotic form:

SCV(H) = n−1R(K)|H|−1/2 + n−2
n∑

i=1

n∑
j=1

(KH ∗KH ∗ LG ∗ LG − 2KH ∗ LG ∗ LG

+ LG ∗ LG)(Xi −Xj)

where LG is the pilot kernel with pilot bandwidth matrix G. The SCV selector ĤSCV is

the minimiser of SCV(H). If there are no replications in the data, then

LSCV(H) = n−1R(K)|H|−1/2 + n−1(n− 1)−1
n∑

i=1

n∑
j=1
j 6=i

(KH ∗KH − 2KH)(Xi −Xj)

which is SCV(H) with G = 0 (since L0 can be thought of as the Dirac delta function).

Equivalently we can think of SCV as pre-smoothing the data Xi with LG or the data

differences Xi−Xj with LG ∗LG before applying the LSCV. If K = L = φ then the SCV

has a simpler form:

SCV(H) = n−1|H|−1/2(4π)−d/2+n−2
n∑

i=1

n∑
j=1

(φ2H+2G−2φH+2G+φ2G)(Xi−Xj). (3.20)
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This form will be used to simplify the calculations in Section 3.4.1.

The asymptotic equivalence between SCV and the smoothed bootstrap, mentioned in

Section 1.3, carries over to the multivariate case. Let X∗
1 ,X

∗
2 , . . . ,X

∗
n be a bootstrap

sample taken from the pilot kernel density estimate f̂P (x;G) = n−1
∑n

i=1 LG(x −Xi).

Let the bootstrap kernel density estimate be

f̂∗(x;H) = n−1
n∑

i=1

KH(x−X∗
i )

and E∗ the expected value with respect to the bootstrap density f̂P (x;G) then

E∗f̂∗(x;H) = E∗KH(x−X∗) =
∫

Rd
KH(x− y)f̂P (y;G) dy = (KH ∗ f̂P (·;G))(x)

and the smoothed bootstrap bias is

Bias∗f̂∗(x;H) = E∗f̂∗(x;H)− f̂P (x;G) = (KH ∗ fP (·;G))(x)− f̂P (x;G).

Since Bias f̂(x;H) = (KH ∗f)(x)−f(x) so the smoothed bootstrap bias is obtained when

f is replaced by the bootstrap density f̂P in the usual bias expression. Let Var∗ be the

bootstrap variance then the bootstrap MISE is

MISE∗ f̂∗(·;H) =
∫

Rd
Var∗f̂∗(x;H) dx+

∫
Rd

[Bias∗f̂∗(x;H)]2 dx

= n−1|H|−1/2R(K) + n−1

∫
Rd

(KH ∗ f̂P (·;G))(x) dx

+
∫

Rd
[(KH ∗ f̂P (·;G))(x)− f̂P (x;G)]2 dx

= SCV(H) + o(n−1|H|−1/2).

3.4.1 Optimal pilot bandwidth selector

Now we have a similar problem to plug-in type selectors: how to select an optimal pilot

bandwidth. Sain et al. (1994) set the pilot to be equal to the final bandwidth. This

circumvents the need to select a separate pilot bandwidth but this is sub-optimal. Jones

et al. (1991) look at the relative mean squared error (RMSE) of the univariate SCV selector.

For a univariate selector ĥ, this is RMSE(ĥ) = E[(ĥ − hAMISE)/hAMISE]2. These authors

then choose the pilot bandwidth which minimises this RMSE. We follow a similar process

though instead we minimise the (A)MSE, keeping in mind that minimising the RMSE and

the (A)MSE are equivalent since the denominator of the RMSE does not depend on the

bandwidth selector.

We could generalise the univariate MSE(ĥ) = E(ĥ−hAMISE)2 in many ways. One such

generalisation is

trMSE(vech Ĥ;G) = E[vechT (Ĥ−HAMISE) vech(Ĥ−HAMISE)].
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This exact MSE is difficult to compute so we use an asymptotic approximation and as in

Chapter 2, we will use the parameterisation g2I for the pilot bandwidth matrix G i.e. we

wish to find

g0 = argmin
g>0

trAMSE(vech ĤSCV; g).

The actual value for g0 is found in Theorem 4. Lemmas 12 and 13 are two preliminary

results which lead to the theorem. Following the theorem is Lemma 14 which states that

the theorem is still valid if the optimal pilot bandwidth g0 is replaced by its (consistent)

plug-in estimate.

Before we begin to evaluate asymptotic expressions for SCV selectors, we need a mod-

ified version of the AMSE Lemma which we call the AMSE′ Lemma. Since we are using

an exact estimate of the integrated squared bias, the usual AMISE approximation is in-

sufficient, we need a higher order expansion AMISE′

AMISE′(H) = AMISE(H) + 1
8

∫
Rd

tr(HD2f(x)) tr(H2(D2)2f(x)) dx

and an estimate of this is ÂMISE′.

Lemma 11 (AMSE′). Assume A1 – A3 from the AMSE Lemma (Lemma 3). Let Ĥ =

argmin
H∈H

ÂMISE′ be a bandwidth selector then MSE(vech Ĥ) = [Id′+o(Jd′)] AMSE′(vech Ĥ).

The higher order asymptotic MSE can be written as

AMSE′ (vech Ĥ) = AVar′(vech Ĥ) + [ABias′(vech Ĥ)][ABias′(vech Ĥ)]T

in which

ABias′(vech Ĥ) = [D2
HAMISE(HAMISE)]−1 E[DH(ÂMISE′ −AMISE′)(HAMISE)]

AVar′(vech Ĥ) = [D2
HAMISE(HAMISE)]−1 Var[DH(ÂMISE′ −AMISE′)(HAMISE)]

× [D2
HAMISE(HAMISE)]−1.

Proof. We expand DHÂMISE′ as follows:

DHÂMISE′(Ĥ) = DH(ÂMISE′ −AMISE′)(Ĥ) +DHAMISE′(Ĥ)

= [Id′ + op(Jd′)]DH(ÂMISE′ −AMISE′)(HAMISE)

+
{
DHAMISE′(HAMISE′) + [Id′ + op(Jd′)]D2

HAMISE(HAMISE′)

× vech(Ĥ−HAMISE′)
}
.

We have DHÂMISE′(Ĥ) = 0 and DHAMISE′(HAMISE′) = 0. This implies that

vech(Ĥ−HAMISE′) = −[Id′ + op(Jd′)][D2
HAMISE(HAMISE′)]−1

×DH(ÂMISE′ −AMISE′)(HAMISE).
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To rewrite the right hand side, we note that

D2
HAMISE′(HAMISE′) = [Id′ + o(Jd′)]D2

HAMISE′(HAMISE)

= [Id′ + o(Jd′)][D2
HAMISE(HAMISE) +D2

HO(‖HAMISE‖3)]

= O(Jd′)D2
HAMISE(HAMISE).

For the left hand side, we have HAMISE′ = [Id′ + op(Jd′ ]HAMISE so

vech(Ĥ−HAMISE′) = [Id′ + op(Jd′ ] vech(Ĥ−HAMISE).

Putting all this together,

vech(Ĥ−HAMISE) = −[Id′ + op(Jd′)][D2
HAMISE(HAMISE)]−1

×DH(ÂMISE′ −AMISE′)(HAMISE).

Taking expectations and variances respectively completes the proof.

Lemma 12. Assume A1 – A2 from the AMSE′ Lemma (Lemma 11). Also assume that

(S1) f has bounded and continuous eighth order partial derivatives

(S2) each element of Θ6 =
∫

Rd(D2)3f(x)f(x) dx is finite

(S3) the sequence of pilot bandwidths g = gn satisfies g−2H → 0 as n→∞

(S4) K and L are normal kernels

then

ABias′(vech ĤSCV; g) = n−2/(d+4)g2Cµ1 + n−2/(d+4)n−1g−d−4Cµ2

+O(Jd′(g4 + n−1g−d−6)) vechHAMISE

where

Cµ1 = 1
2n

2/(d+4)DT
d vec(Θ6HAMISE)

Cµ2 = 1
8(4π)−d/2n2/(d+4)[2DT

d vecHAMISE + (trHAMISE)DT
d vec Id].

Proof. To find ABias′(vech ĤSCV; g), we first find E[DH(SCV − AMISE′)(HAMISE)]. As

K = L = φ, we know that

SCV(H) = n−1|H|−1/2(4π)−d/2 + n−2
n∑

i=1

n∑
j=1

(φ2H+2G − 2φH+2G + φ2G)(Xi −Xj).
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If we remove the non-stochastic terms from the double sum:

SCV(H) = n−1(4π)−d/2|H|−1/2 + n−1(φ2H+2G − 2φH+2G + φ2G)(0)

+ n−2
n∑

i=1

n∑
j=1
j 6=i

(φ2H+2G − 2φH+2G + φ2G)(Xi −Xj).

The expected value of this is

E SCV(H) = n−1[(4π)−d/2|H|−1/2 + C1] + E(φ2H+2G − 2φH+2G + φ2G)(X1 −X2).

where C1 = (2π)−d/2|2H + 2G|−1/2 − 2(2π)−d/2|H + 2G|−1/2 + (2π)−d/2|2G|−1/2.

For A = aH + bG,

EφA(X1 −X2) =
∫

R2d
φA(x− y)f(x)f(y) dxdy

=
∫

R2d
φI(w)f(y + A1/2w)f(y) dwdy.

The eighth order Taylor series expansion of f(y + A1/2w) is

f(y + A1/2w) = f(y) + tr(A1/2DwT )f(y) + 1
2! tr(AD2wwT )f(y)

+ 1
3! [tr(A

1/2DwT ) tr(AD2wwT )]f(y) + 1
4! tr2(AD2wwT )f(y)

+ 1
5! [tr(A

1/2DwT ) tr2(AD2wwT )]f(y) + 1
6! tr2(AD2wwT )f(y)

+ 1
7! [tr(A

1/2DwT ) tr3(AD2wwT )]f(y) + 1
8! tr4(AD2wwT )f(y)

+ o(‖vechA‖4).

For i = 0, 1, 2, . . . , let

m2i = m2i(φI;A) =
∫

Rd
φI(w)tri(AD2wwT ) dw

m2i+1 = m2i+1(φI;A) =
∫

Rd
φI(w)tri(AD2wwT ) tr(A1/2DwT ) dw

then m0 = 1,m2 = tr(AD2),m4 = 3 tr(A2(D2)2),m6 = 15 tr(A3(D2)3) and m8 =

105 tr(A4(D2)4); and m1 = m3 = m5 = m7 = 0. Thus

EφA(X1 −X2)

=
∫

Rd
[m0f(y) + 1

2m2f(y) + 1
4!m4f(y) + 1

6!m6f(y) + 1
8!m8f(y)]f(y) dy

+ o(‖vechA‖4)

=
∫

Rd

[
f(y) + 1

2 tr(AD2f(y)) + 1
8 tr(A2(D2)2f(y)) + 5

240 tr(A3(D2)3f(y))

+ 1
384 tr(A4(D2)4f(y))

]
f(y) dy + o(‖vechA‖4).
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Now as

tr(2H + 2G− 2(H + 2G) + 2G) = 0

tr((2H + 2G)2 − 2(H + 2G)2 + (2G)2) = tr(2H2)

tr((2H + 2G)3 − 2(H + 2G)3 + (2G)3) = tr(6H3 + 12H2G)

tr((2H + 2G)4 − 2(H + 2G)4 + (2G)4) = tr(14H4 + 48H3G + 48H2G2)

then

E(φ2H+2G − 2φH+2G + φ2G)(X1 −X2)

= 1
4

∫
Rd

tr(H2(D2)2f(y))f(y) dy + 1
4

∫
Rd

tr(H2G(D2)3f(y))f(y) dy

+ 1
8

∫
Rd

tr(H3(D2)3f(y))f(y) dy +O(‖vechH2G2‖).

As ∫
Rd

tr(H2(D2)2f(y))f(y) dy =
∫

Rd
tr2(HD2f(y)) dy∫

Rd
tr(H3(D2)3f(y))f(y) dy =

∫
Rd

tr(HD2f(y)) tr(H2(D2)2f(y)) dy

then

E SCV(H) = n−1C1 + AMISE′(H) + 1
4

∫
Rd

tr(H2G(D2)3f(y))f(y) dy

+O(‖vechH2G2‖)

or

E[(SCV −AMISE′)(H)] = n−1C1 + 1
4 tr(H2GΘ6) +O(‖vechH2G2‖)

where Θ6 =
∫

Rd(D2)3f(y)f(y) dy. (Note that the subscript on Θ6 indicates the order of

the derivatives involved.)

We now have E(SCV − AMISE′)(H). The next step is to find the derivative of this.

The derivative of C1 is

DHC1 = −(2π)−d/2|2H + 2G|−1/2DT
d vec(2H + 2G)−1

+ (2π)−d/2|H + 2G|−1/2DT
d vec(H + 2G)−1

as DH|H|−1/2 = −1
2 |H|

−1/2DT
d vecH−1. We will now expand these determinants and

matrix inverses to simplify this derivative. The inverse of I + A can be expanded as

(I + A)−1 = I−A +O(‖vechA‖2)
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Furthermore, let every element of G−1H → 0 as n → ∞ or equivalently for G = g2I,

g−2 trH → 0 as n→∞ then

(aH + bG)−1 = (aH + bg2I)−1

= [bg2(b−1g−2aH + I)]−1

= b−1g−2[I− b−1g−2aH +O(g−4‖vechH‖2)]

= b−1g−2I− ab−2g−4H + o(g−6‖vechH‖2).

The determinant can be expanded using a result from Miller (1987, p.7, 14 – 15)

|I + A| = 1 +
rank(A)∑

i=1

σi

where σi = i−1
∑i

j=1(−1)j+1σi−j trAj and σ0 = 1. Then |I+A| = 1+trA+O(‖vechA‖2)

which means that

|I + A|−1/2 = 1− 1
2 trA +O(‖vechA‖2)

and so

|aH + bG|−1/2 = |aH + bg2I|−1/2

= |bg2(ab−1g−2H + I)|−1/2

= b−d/2g−d[1− 1
2ab

−1g−2 trH +O(g−4‖vechH‖2)]

= b−d/2g−d − 1
2ab

−(d+2)/2g−d−2 trH +O(g−d−4‖vechH‖2).

Combining these two expansions we have

|aH + bG|−1/2(aH + bG)−1

= [b−d/2g−d − 1
2ab

−(d+2)/2g−d−2 trH +O(g−d−4‖vechH‖2)]

× [b−1g−2I− ab−2g−4H +O(g−d−4‖vechH‖2)]

= b−(d+2)/2g−d−2I− ab−(d+4)/2g−d−4H− 1
2ab

−(d+4)/2g−d−4(trH)I

+O(g−d−6‖vechH‖2)

= b−(d+2)/2g−d−2I− 1
2ab

−(d+4)/2g−d−4[2H + (trH)I] +O(g−d−6‖vechH‖2).

The derivative of C1 becomes

DHC1 = −(4π)−d/2[12g
−d−2DT

d vec Id − 1
4g

−d−4(2DT
d vecH + (trH)DT

d vec Id)]

+ (4π)−d/2[12g
−d−2DT

d vec Id − 1
8g

−d−4(2DT
d vecH + (trH)DT

d vec Id)]

+O(g−d−6‖vechH‖2)

= 1
8(4π)−d/2g−d−4[2DT

d vecH + (trH)DT
d vec Id] +O(g−d−6‖vechH‖2).
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The derivative of 1
4g

2 tr(H2Θ6) + O(g4‖vechH‖2) is 1
2g

2DT
d vec(Θ6H) + O(g4 vechH).

Combining these two derivatives and then interchanging the expectation and derivative

operators, we have

E[DH(SCV −AMISE′)(HAMISE)]

= 1
2g

2DT
d vec(Θ6HAMISE) + 1

8(4π)−d/2n−1g−d−4[2DT
d vecHAMISE

+ (trHAMISE)DT
d vec Id] + o(g2 + n−1g−d−4) vechHAMISE.

As D2
HAMISE(HAMISE) = O(Jd′), the result for ABias′ follows immediately.

Lemma 13. Assume A1 – A4 from the AMSE′ Lemma (Lemma 11) and S1 – S4 from

Lemma 12. Then

AVar′(vech ĤSCV; g) = O(Jd′(n−2g−d−8 + n−1))(vechHAMISE)(vechT HAMISE).

Proof. To find AVar′(vech ĤSCV; g), we first find Var[DH(SCV −AMISE′)(HAMISE)] :

Var[DH(SCV −AMISE′)(H)]

= Var[DHSCV(H)]

= n−4 Var
[ n∑

i=1

n∑
j=1
j 6=i

DH(φ2H+2G − 2φH+2G + φ2G)(Xi −Xj)
]

= n−4 Var
[ n∑

i=1

n∑
j=1
j 6=i

(ϕ2H+2G −ϕH+2G)(Xi −Xj)
]

where ϕA(·) was defined in Equation (3.4). As ϕ2H+2G−ϕH+2G is a symmetric function,

the variance simplifies to

Var[DH(SCV −AMISE′)(H)]

= 2n−2 Var[(ϕ2H+2G −ϕH+2G)(X1 −X2)]

+ 4n−1 Cov[(ϕ2H+2G −ϕH+2G)(X1 −X2), (ϕ2H+2G −ϕH+2G)(X2 −X3)]. (3.21)

The first term of Var[DH(SCV −AMISE′)(H)] is

Var[(ϕ2H+2G −ϕH+2G)(X1 −X2)]

= E
{

[(ϕ2H+2G −ϕH+2G)(X1 −X2)] [(ϕ2H+2G −ϕH+2G)(X1 −X2)]
T
}

− [E(ϕ2H+2G −ϕH+2G)(X1 −X2)] [E(ϕ2H+2G −ϕH+2G)(X1 −X2)]
T .

66



3.4. SMOOTHED CROSS VALIDATION

From Lemma 12,

E(ϕ2H+2G −ϕH+2G)(X1 −X2)

= DH[E(φ2H+2G − 2φH+2G + φ2G)(X1 −X2)]

= DH

[
1
4

∫
Rd

tr(H2(D2)2f(y))f(y) dy + o(‖vechH‖2)
]

= 1
2

∫
Rd

DT
d vec(H(D2)2f(y))f(y) dy + o(vechH).

To further simplify this expression, we expand φaH+bG about φbG :

φaH+bG(x) = (2π)−d/2|aH + bG|−1/2 exp
[
−1

2x
T (aH + bG)−1x

]
= (2π)−d/2|bG|−1/2[1 +O(‖vechG−1H‖)]

× exp
{
−1

2x
T (bG)−1x[1 +O(‖vechG−1H‖)]

}
= φbG(x)[1 +O(‖vechG−1H‖)]

and then

ϕaH+bG(x) = φbG(x)DT
d vec[(bG)−1xxT (bG)−1 − (bG)−1 − (bG)−2xxT (aH)(bG)−1

+ (bG)−1xxT (aH)(bG)−2 + (bG)−1(aH)(bG)−1 +O(vechG−3H2)]

which means that

(ϕ2H+2G −ϕH+2G)(x)

= −φ2G(x)DT
d vec[18G

−2xxTHG−1 + 1
8G

−1xxTHG−2 − 1
4G

−1HG−1]

× [1 +O(‖vechG−3H2‖)].

As

E
{
[(ϕ2H+2G −ϕH+2G)(X1 −X2)][(ϕ2H+2G −ϕH+2G)(X1 −X2)]T

}
= |2G|−1/2

∫
R2d

φI(w)2DT
d vec(1

4g
−4H− 1

2g
−4wwTH) vecT (1

4g
−4H− 1

2g
−4wwTH)

×Dd[f(y)2 +O(g2)] dwdy

= 2−d/2g−d−8[R(f) +O(g2)]
∫

Rd
φI(w)2DT

d [14 vecH− 1
2(I⊗H) vec(wwT )]

× [14 vecT H− 1
2(I⊗H) vecT (wwT )]Dd dw

= O(J)d′g
−d−8)(vechH)(vechT H)

and E {[(ϕ2H+2G −ϕH+2G)(X1 −X2)]} = O(Id′) vechH then

Var[(ϕ2H+2G −ϕH+2G)(X1 −X2)] = O(Jd′g
−d−8)(vechH)(vechT H). (3.22)
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We now turn our attention to the second term of Var[DH(SCV −AMISE′)(H)] :

Cov[(ϕ2H+2G −ϕH+2G)(X1 −X2), (ϕ2H+2G −ϕH+2G)(X2 −X3)]

= E
{

[(ϕ2H+2G −ϕH+2G)(X1 −X2)] [(ϕ2H+2G −ϕH+2G)(X2 −X3)]
T
}

− [E(ϕ2H+2G −ϕH+2G)(X1 −X2)] [E(ϕ2H+2G −ϕH+2G)(X2 −X3)]
T

We already have values for the second part of this expression. For the first part, we

can follow a similar procedure in Lemma 12 to find that

E(φ2H+2G − 2φH+2G + φ2G)(X − y) = 1
4 tr(H2(D2)2f(y))[1 + o(1)]

and so

DH E(φ2H+2G − 2φH+2G + φ2G)(X − y) = 1
2D

T
d vec(H(D2)2f(y))[Id′ + o(Id′)].

Then, swapping the order of expectation and differentiation,

E
{
[(ϕ2H+2G −ϕH+2G)(X1 −X2)][(ϕ2H+2G −ϕH+2G)(X2 −X3)]T

}
=
∫

R3d
DH(φ2H+2G − φH+2G + φ2G)(x− y)

× [DH(φ2H+2G − φH+2G + φ2G)(y − z)]T f(x)f(y)f(z) dxdydz

=
∫

Rd
DH E(φ2H+2G − 2φH+2G + φ2G)(X1 − y)

× [DH E(φ2H+2G − 2φH+2G + φ2G)(y −X3)]f(y) dy

= 1
4

∫
Rd

DT
d vec(H(D2)2f(y)) vecT (H(D2)2f(y))Ddf(y)dy [Id′ + o(Id′)]

= O(Jd′)(vecH)(vecT H).

Thus

Cov[(ϕ2H+2G −ϕH+2G)(X1 −X2), (ϕ2H+2G −ϕH+2G)(X2 −X3)]

= O(Jd′)(vecH)(vecT H). (3.23)

If we substitute Equations (3.22) and (3.23) into Equation (3.21):

Var[DH(SCV −AMISE′)(ĤSCV; g)]

= O(Jd′(n−2g−d−8 + n−1))(vechHAMISE)(vechT HAMISE).

We are in a position now to state the main theoretical result of this section; that is to

find an explicit expression for g0 = argmin
g>0

trAMSE′ (vech ĤSCV; g).
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Theorem 4. Under the conditions of Lemmas 12 and 13, the pilot bandwidth which min-

imises the trace of AMSE′ (vech ĤSCV; g) for d > 1 is

g0 =

{
2(d+ 4)CT

µ2
Cµ2[

− (d+ 2)CT
µ2
Cµ1 + C

1/2
µ0

]
n

}1/(d+6)

where

Cµ0 = (d+ 2)2(CT
µ2
Cµ1)

2 + 8(d+ 4)(CT
µ1
Cµ1)(C

T
µ2
Cµ2)

Cµ1 = 1
2n

2/(d+4)DT
d vec(Θ6HAMISE)

Cµ2 = 1
8(4π)−d/2n2/(d+4)[2DT

d vecHAMISE + (trHAMISE)DT
d vec Id].

Note that the expressions Cµ0 ,Cµ1 and Cµ2 are constant with respect to n.

Proof. To find g0 we need to minimise trAMSE′(vec Ĥ; g). From Lemma 12,

[ABias′(vech ĤSCV; g)]T [ABias′(vech ĤSCV; g)]

= n−2/(d+4)(g2Cµ1 + n−1g−d−4Cµ2)
Tn−2/(d+4)(g2Cµ1 + n−1g−d−4Cµ2)

= n−4/(d+4)[g4CT
µ1
Cµ1 + 2n−1g−d−2CT

µ2
Cµ1 + n−2g−2d−8CT

µ2
Cµ2 ]. (3.24)

From Lemma 13,

AVar′(vech ĤSCV; g) = O(n−2g−d−8)‖vechHAMISE‖2= O(n−4/(d+4)n−2g−d−8).

Since the variance is asymptotically negligible compared to the squared bias which is order

n−4/(d+4)n−2g−2d−8, we can attempt to annihilate this squared bias, much like Jones &

Kappenman (1992). The discriminant of the quadratic in Equation (3.24) is 4(CT
µ2
Cµ1)

2−
4(CT

µ1
Cµ1)(C

T
µ2
Cµ2). Let a = (a1, a2, . . . , ad), b = (b1, b2, . . . , bd) then

(aTb)2 − (aTa)(bTb) =
d∑

i=1

d∑
j=1

aibiajbj −
d∑

i=1

d∑
j=1

a2
i b

2
i

=
d∑

i=1

a2
i b

2
i +

d∑
i=1

d∑
j=1
j 6=i

aibiajbj −
d∑

i=1

a2
i b

2
i −

d∑
i=1

d∑
j=1
j 6=i

a2
i b

2
j

=
d∑

i=1

∑
j>i

(−a2
i b

2
j + 2aibiajbj − a2

jb
2
i )

= −
d∑

i=1

∑
j>i

(aibj − ajbi)2

≤ 0

with equality holding iff ai = a for all i and bj = b for all j. Thus equality holds in

general only for d = 1 and so for the multivariate case, the discriminant is negative
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(with probability 1), and we can only minimise this squared bias rather than annihilating

its leading terms. Differentiating Equation (3.24) with respect to g, dividing by 2g3,

multiplying by n4/(d+4) and setting to zero we have

2CT
µ1
Cµ1 − (d+ 2)n−1g−d−6CT

µ2
Cµ1 − (d+ 4)n−2g−2d−12CT

µ2
Cµ2 = 0

which is a quadratic in n−1g−d−6 and has solution

g0 =

{
2(d+ 4)CT

µ2
Cµ2[

− (d+ 2)CT
µ2
Cµ1 + C

1/2
µ0

]
n

}1/(d+6)

where Cµ0 = (d+2)2(CT
µ2
Cµ1)

2+8(d+4)(CT
µ1
Cµ1)(C

T
µ2
Cµ2). This value of g is real-valued

as CT
µ2
Cµ1 < 0 as shown by the following. The (i, j) element of Θ6 is

[Θ6]ij =
d∑

k=1

d∑
`=1

ψei+2ek+2e`+ej .

The elements on the main diagonal of Θ6 are

[Θ6]ii =
d∑

k=1

d∑
`=1

ψ2ei+2ek+2e`
= −

d∑
k=1

d∑
`=1

R(f (ei+ek+e`)) < 0

and so trΘ6 < 0. For a quadratic form, sgn(yTAy) = sgn(trA), so

sgn(CT
µ2
Cµ1) = sgn(tr(Id ⊗Θ6)) = sgn((tr Id)(trΘ6)) = −1.

The relative rate of convergence of the SCV selector is an immediate consequence of

Theorem 4 and the AMSE′ Lemma i.e. if trMSE(vech Ĥ) = O(n−2α‖vechHAMISE‖2) then

Ĥ has relative rate of convergence to HAMISE of n−α.

Theorem 5. Under the conditions of Lemmas 12 and 13, for d > 1 the relative rate of

convergence of ĤSCV to HAMISE is n−2/(d+6).

Proof. From Theorem 4, the optimal rate of the trace of the AMSE′ is

trAMSE′(vech ĤSCV; g0) = O(n−2g−d−8
0 ‖vechHAMISE‖2+g4

0‖vechHAMISE‖2)

= O((n−(d+4)/(d+6) + n−4/(d+6))‖vechHAMISE‖2)

= O(n−4/(d+6)‖vechHAMISE‖2)

as g0 = O(n−1/(d+6)). The rate of convergence is thus n−2/(d+6).
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This is the same rate as the plug-in selector with a SAMSE pilot bandwidth from Sec-

tion 2.2.2, which is not unexpected as both of these selectors use a single pilot bandwidth

except for the univariate SCV selector whose construction is slightly different and so has

a different convergence rate, as shown in Jones et al. (1991). The SCV rate is split into

two cases because for d = 1, where bias annihilation is possible and for d > 1, where

only bias minimisation is possible. We have now determined the convergence rates for all

the fixed full bandwidth selectors we will consider. The results are summarised in Table

3.2. This table shows that for all the selectors, the performance decreases with increasing

dimension. The AMSE plug-in selectors are always the fastest. For d ≤ 3, the BCV and

LSCV selectors are slower than the SCV and SAMSE plug-in selectors. This swaps over

for d > 3. Also important to note is that the discrepancy between HAMISE and HMISE

is dominated by the rate for any selector, except for the AMSE plug-in, LSCV and BCV

selectors for d > 3. This means, apart from these exceptions, the convergence rates to

HAMISE and to HMISE are the same.

Convergence rate to HAMISE

Selector d d = 1 d = 2 d = 3 d = 4 d = 5 d = 6

ĤPI,AMSE (diagonal) n−min(8,d+4)/(2d+12) n−5/14 n−3/8 n−7/18 n−2/5 n−4/11 n−1/3

ĤPI,AMSE n−4/(d+12) n−4/13 n−2/7 n−4/15 n−1/4 n−4/17 n−2/9

ĤPI,SAMSE n−2/(d+6) n−2/7 n−1/4 n−2/9 n−1/5 n−2/11 n−1/6

ĤLSCV n−min(d,4)/(2d+8) n−1/10 n−1/6 n−3/14 n−1/4 n−2/9 n−1/5

ĤBCV1, ĤBCV2 n−min(d,4)/(2d+8) n−1/10 n−1/6 n−3/14 n−1/4 n−2/9 n−1/5

ĤSCV

{
n−5/14 d = 1
n−2/(d+6) d > 1

n−5/14 n−1/4 n−2/9 n−1/5 n−2/11 n−1/6

HAMISE −HMISE n−2/(d+4) n−2/5 n−1/3 n−2/7 n−1/4 n−2/9 n−1/5

Table 3.2: Comparison of convergence rates – all selectors

3.4.2 Estimating the optimal pilot bandwidth

To apply Theorem 4 (i.e. to estimate g0), we need to estimate Cµ1 and Cµ2 . We will use

SAMSE plug-in methods from Chapter 2. The ψr functionals can be used to derive an

explicit expression for Θ6. For the bivariate case,

Θ6 =
[
ψ60 + 2ψ42 + ψ24 ψ51 + 2ψ33 + ψ15

ψ51 + 2ψ33 + ψ15 ψ42 + 2ψ24 + ψ06

]
.

The plug-in estimator Θ̂6(g′6,SAMSE) is constructed by replacing ψr with ψ̂r(g′6,SAMSE).

Since we now are estimating g0 we introduce estimation error. The following lemma states

that ĝ0 is relatively consistent for g0. Since the SCV rate from Theorem 5 comes about

due to a bias minimisation computation then the consistency of ĝ0 guarantees that this

rate remains valid when g0 is replaced by its estimate.
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Lemma 14. Let Ĉµ1 , Ĉµ2 be plug-in estimators of Cµ1 ,Cµ2 i.e.

Ĉµ1 = 1
2D

T
d vec(Θ̂6ĤPI)

Ĉµ2 = 3
8(4π)−d/2[2DT

d vec ĤPI + (tr ĤPI)DT
d vec Id]

where Θ̂6 and ĤPI are SAMSE plug-in estimates of Θ6 and HAMISE. Let ĝ0 be constructed

by replacing Cµ1 and Cµ2 in g0 by their plug-in estimates. Assume S1 – S4 from Lemma

12 then the relative rate of convergence of ĝ0 to g0 is n−2/(d+8).

Proof. Similar to the proof for Lemma 6, we start with

ĝ0 − g0
g0

= Op(ĝd+6
0 − gd+6

0 )O(n)

since g0 = O(n−1/(d+6)). We now examine ĝd+6
0 − gd+6

0 :

ĝd+6
0 − gd+6

0 = Op

(
ĈT

µ1
Ĉµ2

ĈT
µ1
Ĉµ1n

−
CT

µ1
Cµ2

CT
µ1
Cµ1n

)
= Op

(
ĈT

µ1
(Ĉµ2 − Ĉµ1)

ĈT
µ1
Ĉµ1n

)
.

From Section 2.3, using a sixth order SAMSE pilot g′6,SAMSE, then we know Θ̂6−Θ6 =

Op(Jdn
−2/(d+8)) and Θ̂6 = Op(Jd). The discrepancy between Ĉµ1 and Cµ1 is

Ĉµ1 −Cµ1 = 1
2n

2/(d+4)DT
d vec(Θ̂6ĤPI −Θ6HAMISE)

= 1
2n

2/(d+4)DT
d vec[(Θ̂6 −Θ6)HAMISE + Θ̂6(ĤPI −HAMISE)]

= Op((n−2/(d+8) + n−2/(d+6)) vechJd)

= Op(n−2/(d+8) vechJd).

The discrepancy between Ĉµ2 and Cµ2 is

Ĉµ2 −Cµ2 = 1
8(4π)−d/2[2DT

d vec(ĤPI −HAMISE) + tr(ĤPI −HAMISE)DT
d vec Id]

= Op(n−2/(d+6) vechJd)

which is dominated by Ĉµ1 −Cµ1 . Moreover

ĈT
µ1

(Ĉµ2 − Ĉµ1) = Op(ĈT
µ1

(Ĉµ2 −Cµ2 +Cµ1 − Ĉµ1)) = Op(n−2/(d+8))

thus ĝd+6
0 − gd+6

0 = Op(n−2/(d+8)n−1)O(n) = Op(n−2/(d+8)).

This relative rate of convergence for the SCV pilot and its estimate is the same as for

the SAMSE pilot and its estimate, as given in Lemma 6.

3.5 Practical performance of cross validation selectors

We state explicitly the algorithms we use for the various cross validation bandwidth se-

lectors. These are then implemented in a simulation study and real data analysis.
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3.5.1 Algorithms for cross validation bandwidth selectors

The algorithms for LSCV and BCV selectors are straightforward - all that is required is the

numerically minimise the appropriate criterion. The SCV selector is more complex, as we

need to select a pilot bandwidth using plug-in techniques. The SCV selector also requires

the data to be pre-transformed (as described in Section 2.2.3) which yields a bandwidth

matrix that is back-transformed to the original data scale.

Algorithm for LSCV bandwidth matrix selectors

1. Numerically minimise Equation (3.1) LSCV(H).

Algorithm for BCV bandwidth matrix selectors

1. Numerically minimise equation

(a) Equation (3.9) BCV1(H) or

(b) Equation (3.10) BCV2(H).

Algorithm for m-stage SCV bandwidth matrix selectors

1. Set jmax = 2m + 4. Obtain normal reference estimates ψ̂NR
r for |r| = jmax. Plug

these estimates into the SAMSE pilot bandwidth g′jmax−2,SAMSE.

2. For j = jmax − 2, jmax − 4, . . . , 6:

(a) Calculate kernel estimates of ψr functionals of order j = |r| using plug-in

estimate of g′j,SAMSE.

(b) Substitute ψ̂r estimates into Equation (2.10) to give plug-in estimate of pilot

g′j−2,SAMSE.

3. Employ g′6,SAMSE to produce kernel estimate Θ̂6.

4. Employ g′4,SAMSE to produce kernel estimate Ψ̂4. Plug this estimate into Equation

(1.5) to give PI(H).

5. Numerically minimise PI(H) to obtain required plug-in bandwidth matrix ĤPI.

6. Use ĤPI and Θ̂6 to form estimate ĝ0 from Theorem 4.

7. Substitute ĝ0 into Equation (3.20) to form SCV(H) and numerically minimise.
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3.5.2 Simulation results for normal mixture densities

We perform a simulation study, similar to that of Section 2.5, to look at the performance

of the following selectors:

� Sain et al. (1994)’s diagonal LSCV and diagonal BCV2 bandwidth matrix selectors

(labelled DL and DB2 respectively)

� full LSCV bandwidth matrix selector (labelled L)

� full BCV1 and BCV2 bandwidth matrix selectors (labelled B1 and B2)

� full 1-stage SCV bandwidth matrix selector of Section 3.4 with pre-scaling and pre-

sphering (labelled SC and SC*).

Each selector is run for two sample sizes, n = 100 and n = 1000, both for 400 trials (except

for the B1, B2 and DB2 selectors which were run only for 100 trials for the larger sample

size because they proved to be extremely computationally expensive). We employ a quasi-

Newton (variable metric) method of numerical minimisation for the L and SC and SC∗

selectors. We use a constrained version for the B1 and B2 selectors. In the simulation study

reported in Section 3.5, we did not encounter any significant computational difficulties for

the L, DL, SC and SC∗ implementations. However, the implementation for the B1 and B2

selectors is extremely time consuming. Moreover, the constrained optimisation algorithm

for B1, B2 and DB2 sometimes did not converge properly. The percentage rates for

this non-convergence are contained in Table 3.3. For more details about the computer

implementation in the ks library, see Appendix C.

Target density
Selector A B C D E F
B1 n = 100 0.0 0.0 1.0 0.0 2.0 0.0

n = 1000 1.0 0.0 2.0 1.0 1.0 3.0
B2 n = 100 0.0 0.0 0.0 0.0 0.0 0.0

n = 1000 0.0 0.0 0.0 0.0 1.0 0.0
DB2 n = 100 0.0 0.0 0.0 7.0 0.0 0.0

n = 1000 0.0 0.0 11.0 8.0 0.0 1.0

Table 3.3: Percentage rates of non-convergence for biased cross validation selectors

In this section, we present the box plots of the log(ISE) in Figure 3.1 for n = 100 and

in Figure 3.2 for n = 1000. (In Appendix B, Table B.5 contains the bandwidth matrix

that attains the median ISE and Table B.6 contains the means and standard deviations of

the ISE.) Like the results for the plug-in selectors, there is no uniformly best selector, the

performance of a selector depends heavily on the shape of the target density. Overall, the

median of the log (ISE) values is somewhat constant across all cross validation selectors, for
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Figure 3.1: Box plots of log(ISE) for cross validation selectors, sample size n = 100.
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Figure 3.2: Box plots of log(ISE) for cross validation selectors, sample size n = 1000
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a given test density except for density C. What varies more is the spread of the log(ISE).

Looking at the box plots, the wide variability of L and DL selectors, as noted by various

researchers in the past, again is shown here.

For target densities A and B, all the cross validation selectors have similar performance

with perhaps a slight advantage to the SC and SC∗ selectors. For density C, the non-

asymptotic nature of DL and L give them their better performance. The widely separated

modes of this density tends to increase the bias of the other asymptotic selectors, with

DB2 and B2 being particularly adversely affected. For the remaining densities D, E and F,

the SC and SC∗ selectors perform the best overall. The structure of these latter densities is

more intricate: it appears that using an independent pilot bandwidth assists in extracting

more structure. The difference between pre-scaling and pre-sphering, i.e. between SC and

SC∗, is small. Only for density D can we see an advantage for pre-scaling. This density has

two components, one with correlation zero and the other 0.7, which, when put together,

have an overall correlation of about -0.58 so pre-sphering corrupts important structure of

the data. This effect was similarly observed for plug-in selectors in Section 3.5.

It is important to note is that the diagonal selectors DL and DB2 from Sain et al.

(1994) have good performance when compared to the full selectors when HMISE itself is

a diagonal matrix (i.e. target densities A, B and C). Whereas for target densities D, E

and F where HMISE is non-diagonal, these DL and DB2 selectors fare less well. From

the simulation study in Sain et al. (1994), they recommend the DB2 selector over the SC

selector. However this was because their implementation of SC was sub-optimal since it

did not use an independent pilot bandwidth (it was set to be equal to the final bandwidth).

From our simulation study, we see that the SC selector with an appropriately chosen pilot

can have better performance than DB2.

3.5.3 Results for real data

We again turn our attention to the ‘Old Faithful’ geyser data to test the efficacy of the

cross validation selectors on a real data set. The estimates of the bandwidth selectors are

in Table 3.4. The contour plots for the corresponding kernel density estimates are in Figure

3.3. From the previous chapter, we saw that the pre-sphered full bandwidth selectors were

better at capturing the structure of the data as they produced smoother, oblique contours

that were aligned to the dataset rather than to the co-ordinate axes. Here, the L, DB2

and SC selectors produce contours, for the mode in the lower left, that are aligned to the

axes, and for the main mode, contours that are wobbly. This wobbliness is more apparent

for the B1 estimate. The DL selector did not converge for this data. This leaves B2 and

SC∗ to give density estimates with noticeably oblique and smooth contours, though the

B2 estimate is perhaps oversmoothed.
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Figure 3.3: ‘Old Faithful’ geyser data contour plots - cross validation selectors
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DB2 L B1 B2 SC SC∗»
0.0320 0

0 11.80

– »
0.0282 0.0295
0.0295 6.6000

– »
0.0156 0.0012
0.0012 24.989

– »
0.1849 1.9151
1.9151 25.778

– »
0.0365 0.1069
0.1069 8.9714

– »
0.0704 0.6197
0.6197 14.182

–

Table 3.4: Cross validation bandwidth matrices for ‘Old Faithful’ geyser data

The other data set we analysed previously is the child mortality-life expectancy data.

The cross validation selectors for this data set are in Table 3.5. This time B1 and B2

gave the same selector - the contours in Figure 3.4 are too circular-ish whereas most

of the data mass is aligned at angle to the co-ordinate axes. This is a result from the

orientation of the B1 and B2 selectors: they have positive correlation whilst the data have

negative correlation. The L selector gives contours that are smoother and more oblique

than for B1 and B2, though there is still evidence of undersmoothing. SC and SC∗ have

smoother contours still (SC∗ maybe is oversmoothed) and are unimodal, unlike the L

estimate which has a small mode in the right hand corner. The DB2 and DL estimates

are strongly bimodal which we believe is an artifact from using kernels that are oriented

parallel to the axes. At the ‘narrow’ part of the data set, around under-5 mortality of 100

and life expectancy of 60, the lack of smoothing in the oblique direction results in a lower

density estimate here, creating a trough and the appearance of two modes. Taking this

into account, the SC and SC∗ selectors probably best balance the trade-off between the

demands of smoothness with structure recovery in this case.

DL DB2 L B1, B2 SC SC∗»
670.52 0

0 9.979

– »
1072.8 0

0 9.298

– »
388.2 −83.34
−83.34 25.13

– »
1087.1 135.3
135.3 23.59

– »
694.1 −73.07
−73.07 17.50

– »
1322 −191.8
−191.8 34.99

–

Table 3.5: Cross validation bandwidth matrices for child mortality-life expectancy data

In the above analysis, we suggest that the bimodality produced by the DL and DB2

selectors on the UNICEF data may be an artifice. We now present some evidence to justify

this statement. The UNICEF data has two large, circular-ish regions connected with a

narrow, angled region. A target density with a ‘dumbbell’ shape, as shown in Figure 3.5,

approximates the shape of this data. The formula for this density is

4
11N

([
−2
2

]
,

[
1 0
0 1

])
+ 3

11N

([
0
0

]
,

[
0.8 −0.72
−0.72 0.8

])
+ 4

11N

([
2
−2

]
,

[
1 0
0 1

])
Most important is that this density is unimodal, with the mode located at the ‘bridge’

that connects the two flatter ‘discs’. We will show that using a diagonal bandwidth matrix

with data drawn from this density produces bimodality whereas a full bandwidth matrix

does not.

We compute the DL, DB2, SC and SC∗ selectors for a random sample of size 200 from

this density. The results are in Table 3.6. Their corresponding density estimates are in

Figure 3.6. For the L density estimate, there is insufficient smoothing overall, producing
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Figure 3.4: Child mortality-life expectancy contour plots - cross validation selectors
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a noisy estimate with many spurious modes. We can see that DL density estimate, in

the central part, which is narrower and at an angle, there is insufficient smoothing in

the direction of this angle. This leads to lower heights of the density estimate here than

in the flatter, circular ends and thus to a bimodal artifice. The SC and SC∗ density

estimates, with full bandwidth matrices, are able to appropriately smooth the central,

angled region and thus reproduce the unimodality of the target density (though the SC

estimate’s mode is off-centre whereas the SC∗ estimate’s mode is centred). So the SC∗

selector most accurately reconstructs the ‘dumbbell’ density shape from the data.

DL DB2 SC SC∗[
0.1529 0

0 0.1305

] [
0.4477 0

0 0.5612

] [
0.3331 −0.1245
−0.1245 0.2891

] [
0.5646 −0.4043
−0.4043 0.4934

]
Table 3.6: Cross validation bandwidth matrices for ‘dumbbell’ density

3.6 Conclusion

Cross validation bandwidth selectors have already been demonstrated to be useful and in

the one dimensional case and for diagonal bandwidth matrices in the multidimensional

case. In this chapter, we have generalised cross validation selectors to full, unconstrained

bandwidth matrices. Their asymptotic properties, including their relative rates of conver-

gence were derived. These were supplemented by a simulation study of their finite sample

properties. From the consideration of these theoretical and practical properties, the SCV

selectors, with either pre-sphering or pre-scaling, appear to be the best performing cross

validation selector.
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Figure 3.5: Contour plot for ‘dumbbell’ density

Figure 3.6: Contour plot for ‘dumbbell’ density estimates
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Chapter 4

Partitioned bandwidth selectors

4.1 Introduction

Variable bandwidth selectors are a generalisation of fixed bandwidth selectors, as we saw

in Section 1.3.3. Most of the research in variable bandwidth selectors, like fixed bandwidth

selectors, has focused on the univariate case. In this chapter we explore multivariate vari-

able bandwidth selectors of the type exemplified by Sain (2002). This selector is a sample

point selector with two main features: (a) the sample space is partitioned and then (b)

within each partition, an optimal bandwidth matrix is selected. The important assump-

tion is that the bandwidth matrix function Ω(·) and the partition P of the sample space

are both non-random, in an analogous way to how we assume a non-random bandwidth

matrix H in fixed bandwidth kernel density estimation but is in practice determined from

the data. The partitioned kernel density estimate is defined by

f̂PT(x;Ω,P) = n−1
n∑

i=1

KΩ(Xi)(x−Xi). (4.1)

For our random sample X1, . . . ,Xn, the bandwidth matrix associated with Xi is Ω(Xi).

Our hope is that the extra flexibility of having different bandwidths in different parts of

the sample space will give us better performance than using a single bandwidth fixed over

all the sample space. Our task is more complicated as we need to select a partition and a

bandwidth matrix function.

The task of selecting a bandwidth matrix function of arbitrary form appears to be

daunting. To simplify the problem, we restrict Ω(·) to be a piecewise constant function

over P = {P1, P2, . . . , Pν} i.e. we associate a fixed bandwidth matrix Hj with class

Pj , j = 1, 2, . . . , ν. If the data points are in the same partition class Pj then they are

associated with the same bandwidth matrix Hj . Figure 4.1 displays an example of a data

set that would benefit from having different bandwidth matrices in each partition class.

The sample space is the large rectangle, partitioned into 3 classes. For example, all the

data points in P1 are associated with H1 (denoted as P1 ↔ H1 in the figure) and so
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on. The bandwidth matrices follow the local orientation of the data points within each

partition class, rather over the whole sample space.

Figure 4.1: Partition of sample space with data points and associated bandwidth matrices

To select this piecewise constant bandwidth matrix function, we will draw upon the

properties of fixed bandwidth matrices from the previous two chapters. Before we do this,

we write down the various error criteria expressions for this partitioned kernel density

estimator in Section 4.2. Since a pre-specified form of the partition is not required to

proceed with the theoretical development of partitioned bandwidth selectors, we look at

bandwidth selection first in Section 4.3. After this, we then examine two partition selection

methods in Section 4.4. We put the theoretical results from the previous two sections into

practice in Section 4.5 which contains a simulation study and real data analysis.

4.2 Error criteria

For fixed kernel density estimators, we have used the MISE criterion throughout this

thesis for both its mathematical tractability and widespread use. In the fixed case, we

consider the MISE to be a function of the bandwidth H; here we consider the MISE to be

a functional of Ω, defined by

MISE (Ω) ≡ MISE f̂PT(·;Ω) = E
∫

Rd
[f̂PT(x;Ω)− f(x)]2 dx. (4.2)

We stop explicitly denoting the dependence of f̂PT on the partition P since it is now

implicit in the specification of Ω.

As is usual, the first step towards writing down a more explicit expression for the

MISE is to first compute the expected value and variance of the partitioned estimator.
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The expected value is

E f̂PT(x;Ω) = EKΩ(X)(x−X)

=
∫

Rd
KΩ(y)(x− y)f(y) dy

=
ν∑

j=1

∫
Rd
KHj (x− y)f(y)1{y ∈ Pj} dy

=
ν∑

j=1

(KHj ∗ fPj )(x)

where fPj (x) = f(x)1{x ∈ Pj} is the density f restricted to Pj . The variance is

Var f̂PT(x;Ω) = n−2
n∑

i=1

VarKΩ(Xi)(x−Xi) = n−1 VarKΩ(X)(x−X).

In a similar calculation for EKΩ(X)(x−X),

EKΩ(X)(x−X)2 =
ν∑

j=1

(K2
Hj
∗ fPj )(x)

then

Var f̂PT(x;Ω) = n−1
ν∑

j=1

(K2
Hj
∗ fPj )(x)− n−1

[ ν∑
j=1

(KHj ∗ fPj )(x)
]2

which gives the MSE to be

MSE f̂PT(x;Ω)

= n−1
ν∑

j=1

(K2
Hj
∗ fPj )(x)− n−1

[ ν∑
j=1

(KHj ∗ fPj )(x)
]2

+
[ ν∑

j=1

(KHj ∗ fPj )(x)− f(x)
]2

= n−1
ν∑

j=1

(K2
Hj
∗ fPj )(x) + (1− n−1)

ν∑
j=1

ν∑
j′=1

(KHj ∗ fPj )(x)(KHj′ ∗ fPj′ )(x)

− 2
ν∑

j=1

(KHj ∗ fPj )(x)f(x) + f(x)2.

This can then be integrated to yield a corresponding MISE expression. This expression

can be simplified a little if we note that the integral of the first term of the MSE is

n−1
ν∑

j=1

∫
Rd

(K2
Hj
∗ fPj )(x) dx = n−1

ν∑
j=1

∫
R2d

K2
Hj

(x− y)fPj (y) dxdy

= n−1
ν∑

j=1

∫
Rd

[
|Hj |−1/2

∫
Rd
K(w)2 dw

]
fPj (y) dy

= n−1R(K)
ν∑

j=1

|Hj |−1/2

∫
Rd
fPj (y) dy.
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The MISE is thus

MISE f̂PT(·;Ω)

= n−1R(K)
ν∑

j=1

πj |Hj |−1/2 + (1− n−1)
ν∑

j=1

ν∑
j′=1

∫
Rd

(KHj ∗ fPj )(x)(KHj′ ∗ fPj′ )(x) dx

− 2
ν∑

j=1

∫
Rd

(KHj ∗ fPj )(x)f(x) dx+R(f).

where πj =
∫

Rd fPj (x) dx =
∫
Pj
f(x) dx is the probability mass of f in Pj . The integrals

of this MISE do not have closed forms so we will work towards a tractable asymptotic

expression.

To progress further, we need an extra condition on the structure of the partition.

We assume that the classes P1, P2, . . . , Pν are open sets and that the boundaries of these

classes ∂P has measure zero; and that {P1, P2, . . . , Pν , ∂P} form a partition of the sample

space i.e. Pi ∩ Pj = ∅, Pi ∩ ∂P = ∅ for all i, j and
⋃ν

i=1 Pi ∪ ∂P is the sample space. For

the moment, suppose that K(· − x) has compact support, denoted by supp(K,x). Let x

be an interior point in Pj , then there exists ε > 0 such that B(x, ε) ⊂ Pj , where B(x, ε)

is the open ball, centred at x and with radius ε. For all ε > 0, there exists H such that

supp(KH,x) ⊂ B(x, ε). Taking these together, we have for all ε > 0 we can find H where

supp(KH,x) ⊂ Pj since Pj is an open set. So for small enough H, we can say that the

contribution of the kernel centred at the point x lies entirely within a single partition class

Pj . Hence an integral over Pj can be reduced to an integral over supp(K,x). Using this

asymptotic argument, we can simplify the expected value

E f̂PT(x;Ω) =
ν∑

j=1

∫
Pj

KHj (y − x)f(y)1{y ∈ Pj} dy

=
ν∑

j=1

∫
supp(KHj

,x)
KHj (y − x)f(y)1{y ∈ Pj}[1 + o(1)] dy

=
ν∑

j=1

∫
supp(K,0)

K(w)f(x+ H1/2
j w)1{x+ H1/2

j w ∈ Pj}[1 + o(1)] dw

=
ν∑

j=1

∫
supp(K,0)

K(w)[f(x)−wTH1/2
j Df(x) + 1

2w
TH1/2

j D2f(x)H1/2
j w

+ o(‖vechHj‖)]1{x ∈ Pj}[1 + o(1)] dw

= f(x) + 1
2µ2(K)

ν∑
j=1

tr(HjD
2f(x))1{x ∈ Pj}+ o(‖vechHmax‖)

where Hmax is the bandwidth matrix which attains the maximum of {‖vechHj‖ : j =

1, 2, . . . , ν}. This then leads to the bias expression

Bias f̂PT(x;Ω) = 1
2µ2(K)

ν∑
j=1

tr(HjD
2f(x))1{x ∈ Pj}+ o(‖vechHmax‖).
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The squared bias has a simple form:

Bias2 f̂PT(x;Ω) = 1
4µ2(K)2

ν∑
j=1

ν∑
j′=1

tr(HjD
2f(x))1{x ∈ Pj} tr(HjD

2f(x))1{x ∈ Pj′}

= 1
4µ2(K)2

ν∑
j=1

tr2(HjD
2f(x))1{x ∈ Pj}

since x is an interior point and cannot belong to two partition classes simultaneously.

We simplify the variance in a similar manner:

EKΩ(X)(x−X)2 =
∫

Rd
KΩ(y)(x− y)2f(y) dy

=
ν∑

j=1

∫
Pj

KΩ(y)(x− y)2f(y)1{y ∈ Pj} dy

=
ν∑

j=1

|Hj |−1/2

∫
supp(K,0)

K(w)2f(x+ H1/2
j w)1{x+ H1/2

j w ∈ Pj} dw

=
ν∑

j=1

|Hj |−1/2

∫
supp(K,0)

K(w)2[f(x) + o(1)]1{x ∈ Pj}[1 + o(1)] dw

= R(K)
ν∑

j=1

|Hj |−1/2f(x)1{x ∈ Pj}+ o(|Hmin|−1/2)

where Hmin is defined in an analogous way to Hmax. This dominates [EKΩ(X)(x−X)]2 =

f(x)2 + o(1) so

Var f̂PT(x;Ω) = n−1R(K)
ν∑

j=1

|Hj |−1/2f(x)1{x ∈ Pj}+ o(n−1|Hmin|−1/2).

If we combine these to form the AMSE

AMSE f̂PT(x;Ω) = n−1R(K)
ν∑

j=1

|Hj |−1/2fPj (x) + 1
4µ2(K)2

ν∑
j=1

tr2(HjD
2fPj (x))

The AMSE is valid for points that are in the interior of the partition classes and if

n−1|Hmin|−1/2 → 0 and every element of Hmax → 0 as n → ∞. As the boundary points

altogether have measure zero, we can effectively ignore them when integrating to form the

AMISE

AMISE f̂PT(·;Ω) = n−1R(K)
ν∑

j=1

πj |Hj |−1/2 + 1
4µ2(K)2

ν∑
j=1

(vechT Hj)Ψ4,Pj (vechHj)

where

Ψ4,Pj =
∫

Rd
vech(2D2fPj (x)− dgD2fPj (x)) vechT (2D2fPj (x)− dgD2fPj (x)) dx

=
∫

Pj

vech(2D2f(x)− dgD2f(x)) vechT (2D2f(x)− dgD2f(x)) dx.
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For this AMISE expression we have assumed that the kernel K has compact support.

This is true for many common kernels (e.g. Epanechnikov, biweight, triangle) though not

the normal kernel. Fortunately the normal kernel has an ‘effective’ compact support i.e.

the probability mass outside this effective support is ‘close enough’ to zero that it can be

ignored for practical purposes. We could consider compact supports that are hyperspheres

which are ‘natural’ when dealing with spherically symmetric kernels. However we examine

compact supports which are hypercubes since these will aid our computer implementation

of kernel density estimators over hypergrids.

We know that the standard multivariate normal density φI is the product of d uni-

variate standard normal densities. From the univariate standard normal density, we can

obtain the upper and lower α/2 quantiles zα/2 and −zα/2 easily. So we can treat the

d-dimensional hypercube [−zα/2, zα/2]d as an effective support since

∫
[−zα/2,zα/2]d

φI(x) dx =
d∏

i=1

∫ zα/2

−zα/2

φ(xi) dxi = (1− α)d.

For example, for zα/2 = 3.7 where α = 0.0002156, the bivariate normal kernel has only

about 0.04% of its probability mass outside [−3.7, 3.7]2. It is possible to effectively restrict

the support of the normal kernel because it has fast (i.e. exponentially) decaying tails.

The MISE and AMISE expressions remain unknown in practice since their values

depend on the target density f . So MISE- and AMISE-optimal Ω are still unattainable.

In the next section, we look at data-based bandwidth selection. In the section after that,

we look at data-based partition selection.

4.3 Bandwidth selection

The problem we tackle in this section is the bandwidth selection. In the ideal case, we are

aiming for a MISE-optimal bandwidth function

ΩMISE = argmin
Ω

MISE (Ω).

We can similarly define an AMISE-optimal ΩAMISE. We use the fixed bandwidth selectors

from the previous chapters as a base to construct our partitioned bandwidth selectors.

The partitioned LSCV is a straightforward extension of the fixed bandwidth case:

LSCV(Ω) = R(f̂PT(·;Ω))− 2n−1
n∑

i=1

f̂PT,−i(Xi;Ω) (4.3)

where

f̂PT,−i(Xi;Ω) = (n− 1)−1
n∑

i′=1
i′ 6=i

KΩ(Xi′ )
(Xi −Xi′).
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The unbiasedness property of the fixed bandwidth LSCV carries over. The MISE is

MISE (Ω) = ER(f̂PT(·;Ω))− 2
∫

Rd
E f̂PT(x;Ω)f(x) dx+R(f).

We have E LSCV (Ω) = MISE (Ω)−R(f) as

E

[
n−1

n∑
i=1

f̂−i(Xi;Ω)

]
= n−1(n− 1)−1

n∑
i=1

n∑
i′=1
i′ 6=i

KΩ(Xi′ )
(Xi −Xi′)

= EKΩ(X1)(X1 −X2)

=
∫

R2d
KΩ(x)(x− y)f(x)f(y) dxdy

=
∫

Rd

[∫
Rd
KΩ(x)(x− y)f(y) dy

]
f(x) dx

=
∫

Rd
E f̂PT(x;Ω)f(x) dx.

The LSCV can be rewritten as

LSCV (Ω) = n−2
n∑

i=1

n∑
i′=1

(KΩ(Xi) ∗KΩ(Xi′ )
)(Xi −Xi′)

− 2[n(n− 1)]−1
n∑

i=1

n∑
i′=1
i′ 6=i

KΩ(Xi′ )
(Xi −Xi′). (4.4)

This further simplifies for normal kernels to

LSCV (Ω)

= n−2
n∑

i=1

n∑
i′=1

φΩ(Xi)+Ω(Xi′ )
(Xi −Xi′)− 2[n(n− 1)]−1

n∑
i=1

n∑
i′=1
i′ 6=i

φΩ(Xi′ )
(Xi −Xi′).

The LSCV selector Ω̂LSCV is the minimiser of LSCV(Ω). Another simplification can

be obtained if we use the h2I type parameterisation, as in Sain (2002) i.e. we have

Ω(Xi) = ω(Xi)2I where ω(Xi) = hj if Xi belongs to class j. This is done in an attempt

to reduce the complexity (from 1
2d(d+ 1)ν to ν bandwidths) and increase the stability of

bandwidth selection:

LSCV (ω) = n−2
n∑

i=1

n∑
i′=1

(Kω(Xi)2I ∗Kω(Xi′ )
2I)(Xi −Xi′)

− 2[n(n− 1)]−1
n∑

i=1

n∑
i′=1
i′ 6=i

Kω(Xi′ )
2I(Xi −Xi′). (4.5)

In the above calculations for LSCV, we do not use the special the structure we impose

on Ω (i.e. piecewise constancy) to write down LSCV(Ω). So this expression is valid
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for a general bandwidth matrix function Ω. For the Abramson selector we use Ω(Xi) =

h2f(Xi)−1I. This parameterisation appears to be somewhat restrictive, given the evidence

of the previous results for full fixed bandwidth matrices. However it is mitigated by the

fact that these variable bandwidth matrices take into account the locally varying number

of data points (as measured by the height of the density function) which is ignored by

fixed bandwidths. We denote its least squares cross validation as

LSCV′ (h) = n−2
n∑

i=1

n∑
i′=1

(Kh2f(Xi)−1I ∗Kh2f(Xi′ )
−1I)(Xi −Xi′)

− 2n−1(n− 1)−1
n∑

i=1

n∑
i′=1
i′ 6=i

Kh2f(Xi′ )
−1I(Xi −Xi′). (4.6)

Before we can minimise this in practice, we estimate f with a pilot estimate f̃P (·;G). The

minimiser of this then is ĥLSCV′ .

4.4 Partition selection

The approach to partition selection taken by Sain (2002) is based on a pilot kernel den-

sity estimate. A pilot kernel density estimate is computed from the data and its sam-

ple modes extracted. The data points are then associated with closest sample mode.

For the data set, labelled 1–15, in Figure 4.2, we construct a normal reference pilot

kernel density estimate and extract its sample modes. There are three of them and

they are denoted by the solid triangles. The resulting partition of the data set is then

{1, 2, 5, 9, 11, 12}, {3, 4, 7, 10, 13}, {6, 8, 14, 15}.

Figure 4.2: Partition based on sample mode allocation

Our approach to selecting the partition is via multivariate clustering. There are many

clustering algorithms available as thoroughly described in the monographs by Everitt

90



4.4. PARTITION SELECTION

(1993) and Gordon (1999). We focus on hierarchical clustering algorithms. These are

based on a constructing a whole family of relationships between the data points, based on

their dissimilarity d(Cj , Cj′) which is, as its name suggests, a measure of how far apart

clusters Cj and Cj′ are.

1. We start with the data X1, . . . ,Xn placed into n singleton clusters C1, . . . , Cn.

2. Compute the dissimilarities for each pair of distinct clusters d(Cj , Cj′).

3. Fuse together the clusters which have the smallest dissimilarity into a single cluster

– there is now one less cluster.

4. Repeat steps 2 – 3 until there is one cluster containing all data points.

From this algorithm we see that we build clusters with increasingly more members so this

type of hierarchical clustering are known as agglomerative.

There are many way of measuring the dissimilarity between two clusters including this

list given by Gordon (1999, p. 79): single linkage, complete linkage, group average linkage,

weighted average linkage, mean dissimilarity, sum of squares, incremental sum of squares,

centroid, median. The one that we will use is the group average linkage where

d(Cj , Cj′) = n−1
j n−1

j′

∑
Xi∈Cj

∑
Xi′∈Cj′

(Xi −Xi′)T (Xi −Xi′)

where nj is the number of data points in Cj . Here we are using the L2 or Euclidean

distance. There are many ways of measuring the dissimilarity between two points - we

choose the Euclidean distance as it is the most mathematically tractable. Others include

the city block (or Manhattan), Canberra and Minkowski distances, see Gordon (1999,

Section 2.2.3). There is a vast literature on the most appropriate choice of dissimilarity

and there is not always consensus because the most appropriate choice is dependent on the

structure of the data sample. For a summary discussion, consult Everitt (1993, Section

4.4) or Gordon (1999, Section 4.3). We have chosen to use the group average link as,

following the conclusions of the above authors, it is not affected by chaining (the tendency

to create long sequences of points fused into a cluster even if the end points are far apart),

does not impose spherical clusters and is a compromise between the extremes of single

and complete linkage.

The hierarchical clustering structure can be represented by a dendogram. A dendogram

is an upside-down tree with the root node being the cluster containing all points, splitting

as each cluster is divided, until the leaves are the singleton clusters. We illustrate this

with a small data example in Figure 4.3. On the right is the data set of 15 points from

Figure 4.2. The corresponding dendogram is given on the right. The dendogram gives us
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an easy visual device to describe the clusters. For example, we wish to find 3 clusters in

this data set: to do this we simply cut the dendogram so that a horizontal line intersects

exactly three branches. The cluster memberships can then be read off the dendogram i.e.

{1, 2, 3, 5, 9, 11, 12}, {4, 7, 10, 13}, {6, 8, 14, 15}.

Figure 4.3: Example of dendogram

Deciding the number of clusters in the data set is crucial next step. There are many

stopping rules to decide this. Milligan & Cooper (1985) conducts an extensive study of 30

stopping rules. One method that these authors recommend is from Duda & Hart (1973,

Section 6.12). The advantage of this method is that it can decide whether to divide the

whole data set into two clusters. Some of the other methods recommended in Milligan &

Cooper (1985) are not designed to do this (i.e. these assume the existence of at least two

clusters). This stopping rule is based on finding significant changes in the value of the

within-clusters sum of squares, for ν clusters,

W (ν) =
n∑

i=1

(Xi − X̄α(Xi))
T (Xi − X̄α(Xi)) =

ν∑
j=1

∑
Xi∈Cj

(Xi − X̄j)T (Xi − X̄j)

where α(Xi) = j when Xi belongs to Cj and X̄j = n−1
j

∑
Xi∈Cj

Xi. Assuming that the

dataX1,X2, . . . ,Xn are drawn from a d-variate normal density with mean µ and variance

σ2Id, we will use the following hypothesis test

H0: Population distribution is N(µ, σ2Id) i.e. there is one cluster

H1: Not H0 i.e. there are (at least) two clusters

using the test statistic

W = W (2)/W (1).

The exact sampling distribution for W is unknown though Duda & Hart (1973) derive the

following approximate results.
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Under the null hypothesis

W (1) .∼N(dnσ2, 2dnσ4).

We then divide these n data points into two clusters (which is spurious under the null

hypothesis) by dividing them with a hyperplane containing the sample mean X̄ to obtain

W (2) .∼N
(
dnσ2 − 2nσ2

π
, 2dnσ4 − 16dnσ4

π2

)
.

This means that W is a ratio of two normal random variables. Duda & Hart then use

a normal approximation of W for tractability reasons. Let Y1 ∼ N(µ1, σ
2
1) and Y2 ∼

N(µ2, σ
2
2) be univariate normal random variables then

Y2

Y1

.∼N
(
µ2

µ1
,
σ2

2

µ2
1

)
if σ2

1/µ
2
1 → 0 as n→∞. The approximate sampling distribution for W is

W
.∼N
(

1− 2π
d
,

2
dnj

− 16
d2njπ

)
as 2ndσ4/(n2d2σ4) = 2/(nd) → 0 as n→∞. We know that W (2) is no larger than W (1)

under H0 so we use a one-sided test. We will reject the null hypothesis at significance

level α when

W > 1− 2π
d

+ z1−α

√
2
dnj

− 16
d2njπ

where z1−α is the (1− α)-quantile of the standard normal distribution.

This test can be conducted in series. We start with the one cluster containing all n data

points, X1,X2, . . . ,Xn, and calculate W (1) from these points. We cut the dendogram at

two clusters and calculate W (2) and apply this test. If the null hypothesis is accepted then

we conclude that there is only one cluster in the data. Otherwise if it is rejected, and we

conclude that we have (at least) two clusters. As a result of the hierarchical structure of

the clustering, it follows that one of these two clusters remains intact and the other divides

into two clusters. We apply the test to the two daughter clusters and the mother cluster

and so on, till no more clusters are statistically significant. The value of the individual

level of significance α then does not correspond to a combined level of significance since

the series of tests are related. Milligan & Cooper (1985) in their simulations trials use

a heuristically chosen zα = 3.20 which corresponds to α = 0.0006871 whereas we use

α = 0.001 in our simulation study in Section 4.5. (We also tried α = 0.01, 0.05 but these

give spurious clusters more often than with α = 0.001.)

We have now a method of deciding on the the most appropriate clustering/partition of

our data. With this partition, we can then compute LSCV(Ω), Equation (4.4), and then

find the resulting minimiser bandwidth matrices. We call these pre-clustered bandwidth

matrices.
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4.5 Practical performance for variable bandwidth matrix se-
lectors

The algorithms for pre-clustered bandwidth selectors are similar to their fixed bandwidth

counterparts. The main difference is that the data are pre-transformed then pre-clustered,

ensuring that the pre-clustering is scale independent. This is followed by the numerical

optimisation of the appropriate criterion and back-transforming to the original data scale.

Along with the algorithm for the pre-clustered LSCV selector, we describe the al-

gorithm of the Abramson (1982) selector, in the implementation provided by Silverman

(1986, Section 5.3), as a benchmark. The description below of Sain (2002)’s selector is

slightly different to the one the author uses. Instead of using the exact form of LSCV(Ω)

as we do, he relies on a binned form. Binning consists dividing the data set into bins

and then counting the number of data points that fall into these bins. This is a similar

procedure for constructing a (multivariate) histogram though here we are not restricted to

using hyperrectangular bins. These bins counts can then be used to compute the LSCV.

The advantage of binning is that its complexity depends on the number of bins rather

than the number of data points which makes it useful in large sample computations. For

more details on binning, see Wand & Jones (1995, Appendix D). However for consistency

for comparison, we implement it here in its exact form.

4.5.1 Algorithms for variable bandwidth matrix selectors

Algorithm for Abramson LSCV bandwidth matrix selector

1. Compute a pilot density estimate f̃(·; ĜNR) with the normal reference selector

ĜNR =
[

4
(d+ 2)n

]−2/(d+4)

S.

2. Substitute f̃(·; ĜNR) into LSCV′(h), Equation (4.6), and numerically minimise over

h to obtain ĥLSCV′ .

3. The bandwidth matrices are given by Ω̂(Xi) = ĥ2
LSCV′ f̃(Xi; ĜNR)−1I. Note that

there are n of these.

Algorithm for Sain partitioned LSCV bandwidth matrix selector

1. Pre-scale the data. Compute a pilot density estimate f̃(·; ĜNR) with the normal

reference selector

ĜNR =
[

4
(d+ 2)n

]−2/(d+4)

S∗D.

where S∗D is the variance of the pre-scaled data
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2. Identify the modes of f̃ . Associate data points to the nearest mode. This induces a

partition of the data P = {P1, P2, . . . , Pν} where ν is the number of sample modes.

3. Numerically minimise Equation (4.5), LSCV(ω), with respect to ω to obtain ω̂ ≡
{ĥLSCV,1, . . . , ĥLSCV,ν}. Note that there are ν bandwidths. Back-transform to the

original data scale i.e. Ω̂(Xi) = ĥ2
LSCV,jSD, Xi ∈ Pj .

Algorithm for pre-clustered LSCV bandwidth matrix selectors

1. Pre-cluster the data. This involves choosing a metric, a dissimilarity, a stopping

rule and a significance level. This clustering then induces a partition of the data

P = {P1, P2, . . . , Pν} where ν is the number of clusters.

2. Numerically minimise Equation (4.4), LSCV(Ω), over Ω to obtain Ω̂ ≡ {ĤLSCV,1,

. . . , ĤLSCV,ν}. Note that there are ν bandwidth matrices.

4.5.2 Simulation results for mixture densities

We perform a simulation study, similar to those of Section 2.5.2 and 3.5.2 except that

we replace densities C and F with two new mixture densities. Density A is a base case

as before. Density B has two modes which are not widely separated. Density D was

noted as providing a challenge to fixed bandwidth selectors, in the previous chapters.

Its modes have differing orientations with a small gap separating them. Density E is a

trimodal, kurtotic density. Density G is a normal mixture with widely separated modes

with components perpendicular to each other. This density is a sort of benchmark density

where we expect that the pre-clustered selector should perform well. Density H is similar

to density G except that it is a t-mixture. We use a t-mixture to show that pre-clustered

selectors do not rely on the normal mixture structure. In Table 4.1, a multivariate t

distribution with location parameter µ, scale parameter Σ and df degrees of freedom has

density

t(µ,Σ, df) =
Γ((df + d)/2)

(dfπ)d/2Γ(df/2)|Σ|1/2

[
1 +

1
df

(x− µ)TΣ−1(x− µ)
]−(d+df)/2

.

The contour plots for these target densities are in Figure 4.4.

We look at the performance of the following selectors:

� fixed 2-stage SAMSE plug-in selector with pre-scaling (labelled S2)

� fixed LSCV bandwidth matrix selector (labelled L)

� fixed 1-stage SCV bandwidth matrix selector with pre-scaling (labelled SC)

� Abramson (1982) bandwidth matrix selector (labelled AL)
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Figure 4.4: Contour plots for target densities A, B, D, E, G & H
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Target
density Formula

A N

([
0
0

]
,

[
0.25 0
0 1

])
B 1

2N

([
1
0

]
,

[
4
9 0
0 4

9

])
+ 1

2N

([
−1
0

]
,

[
4
9 0
0 4

9

])
D 1

2N

([
1
−1

]
,

[
4
9

14
45

14
45

4
9

])
+ 1

2N

([
−1
1

]
,

[
4
9 0
0 4

9

])
E 3

7N

([
−1
0

]
,

[
9
25

63
250

63
250

49
100

])
+ 3

7N

([
1
2√
3

]
,

[
9
25 0
0 49

100

])
+ 1

7N

([
1

− 2√
3

]
,

[
9
25 0
0 49

100

])
G 1

2N

(
[−1, 1],

[
1
5

4
25

4
25

1
5

])
+ 1

2N

(
[1,−1],

[
1
5

4
25

4
25

1
5

])
H 1

2 t

(
[−1, 1],

[
1
5

9
50

9
50

1
5

]
, 4
)

+ 1
2 t

(
[1,−1],

[
1
5 − 9

50
− 9

50
1
5

]
, 4
)

Table 4.1: Formulas for target densities A, B, D, E, G & H

� Sain (2002) bandwidth matrix selector with h2I parameterisation (labelled SL)

� pre-clustered LSCV bandwidth matrix selector with Euclidean metric with average

linkage, the Duda & Hart stopping rule with a significance level of 0.001 (labelled

PL)

The labels for the variable bandwidth selectors end in ‘L’ to denote their dependence on

the LSCV. The S2 and SC selectors can be considered to be amongst the best of the

fixed selectors from the preceding chapters. We do not use pre-sphering since we have

widely separated modes and we know that pre-sphering is not appropriate for these cases

as a prelude to clustering and to bandwidth selection. We include the fixed L selector for

comparison to its pre-clustered version. The AL and SL selectors serve as benchmarks for

variable bandwidth performance. We run 400 trials for each sample size, target density

and bandwidth selector combination (except for n = 1000, the SL selectors, due to their

extremely heavy computational burden, are run for 100 trials).

Before we look at the ISE performance, we examine the performance of the pre-

clustering in Table 4.2. The pre-clustering determines the number of bandwidth matrices

ν̂ that we use to smooth the data. Our choice of clustering using average linkage with the

Duda & Hart stopping rule at 0.001 significance level, performs quite well for the normal

mixture densities A, D and G. It does less well for densities B and E whose clusters are

not as well separated. It also does less well for density H. The heavy tails of the t-mixtures

makes it more difficult to distinguish between clusters, especially for n = 1000. (So in this

case where we can only find one cluster, we reproduce the fixed L selector.) This may be

improved by using other dissimilarity measures, stopping rules and metrics.

We now present the box plots of the log(ISE) in Figure 4.5 for n = 100 and in Figure 4.6

for n = 1000. (In Appendix B, Table B.7 contains the means and standard deviations of
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n = 100 n = 1000
Target density ν ν̂ = 1 ν̂ = 2 ν̂ = 3 ν̂ ≥ 4 ν̂ = 1 ν̂ = 2 ν̂ = 3 ν̂ ≥ 4

A 1 84.00 15.00 1.00 0.00 97.25 2.25 0.50 0.00
B 2 21.25 78.50 0.25 0.00 55.75 44.00 0.25 0.00
D 2 3.00 96.50 0.50 0.00 10.50 89.25 0.25 0.00
E 3 69.50 11.00 19.00 0.50 59.00 1.50 38.50 1.00
G 2 0.00 95.50 3.25 0.00 0.25 97.50 0.25 2.00
H 2 42.50 57.00 0.05 0.00 93.25 6.75 0.00 0.00

Table 4.2: Percentages for the estimated number of clusters (ν̂) compared to true number
of clusters (ν)

the ISE.) The results are mixed: it is surprisingly difficult to improve over the AL selector.

This selector is better than all the fixed selectors for all sample sizes and target densities

except for density D where it concedes some performance to the S2 and SC selectors. The

AL selector outperforms the SL selector in all cases presented here. For our PL selector,

the comparison is somewhat patchy since it clearly has the lowest median log(ISE) values

only for density G. For density H, its performance is a little worse than the AL selector

though both are markedly better than the SL and fixed selectors. For the other target

densities, A, B, D and E, the PL selector is worse than the two other variable selectors

and the fixed selectors S2 and SC, though it has similar performance as the L selector.

This suggests that the PL selector best handles target densities that have tight, compact,

well separated clusters. By visual inspection of the structure of the densities G and H, it

is easy to ascertain that the most appropriate smoothing is to individually smooth each

data cluster. Thus the value of the PL selector lies in its ability to perform this differential

smoothing automatically.

4.5.3 Results for real data

We analyse the ‘Old Faithful’ geyser data again, with the variable bandwidth selectors,

comparing them to the fixed plug-in and smoothed cross validation selectors. In Figure 4.7,

the S2, L and SL estimates have wavy contours for the upper right mode. The PL estimate

is able to apply different amounts of smoothing in different areas: the result of clustering

for the PL selector divides the data into a lower left cluster (denoted by the triangles) and

a upper right cluster (denoted by the circles). For the upper right mode, its contours are

both inclined and smooth (like the SC and AL estimates). Moreover, for the lower left

mode, its contours this time are still smooth though now aligned to the co-ordinate axes,

thus illustrating the flexibility of the PL bandwidths. The AL estimate is similar to the PL

one, in that it is able to reproduce the direction and degree of this smoothing. The SL pilot

kernel density estimate divides the data into three groups, denoted by circles, triangles

and crosses. Though this time the partition is such that the restricted local bandwidth
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Figure 4.5: Box plots of log(ISE) for fixed and variable selectors, sample size n = 100

99



CHAPTER 4. PARTITIONED BANDWIDTH SELECTORS

Figure 4.6: Box plots of log(ISE) for fixed and variable selectors, sample size n = 1000
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matrices are not able to produce appropriate degrees and directions of smoothing. So it

does not have the same smoothness of the AL and PL estimates.

Figure 4.7: ‘Old Faithful’ geyser data contour plots - fixed and variable selectors – for PL
and SL, the different data groups are denoted by circles, triangles and pluses

For the UNICEF data, the density estimates are in Figure 4.8. The PL selector gives
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rise to an estimate that appears to be undersmoothed in the lower right half (denoted by

the circles) with an overall bimodality, much like the L estimate. The SL pilot estimate also

divides the dataset into two classes, producing the bimodality again but with smoother

contours. The AL and S2 estimates give contours that are similar to the SL estimate. The

SC selector (i.e. a fixed bandwidth selector) gives an estimate that is unimodal. From this

example, we see that variable bandwidth selectors can be difficult to calibrate and that

fixed bandwidth selectors can be useful even if there is clustered structure in the data set.

4.6 Conclusion

The implementation of a pre-clustered bandwidth selector has been examined here. There

are many factors that could affect the performance, e.g. choice of distance function,

choice of clustering criterion, choice of stopping rule, that have not been explored fully to

search for optimality. However we have demonstrated that the pre-clustered kernel density

estimate can extract more structure from the data in certain situations. Our caveat is that

the performance of variable bandwidth selectors for finite samples is not always assured

to be better than fixed selectors.
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Figure 4.8: Child mortality data contour plots – fixed and variable selectors – for PL and
SL, the different data groups are denoted by circles and triangles
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Chapter 5

Kernel discriminant analysis

5.1 Introduction

In the previous chapters, we have seen that kernel density estimation is useful and im-

portant in its own right, especially for exploratory data analysis. In this chapter, we

demonstrate the utility of kernel density estimators as applied to discriminant analysis.

Suppose we have a set of ν populations or groups that correspond to density functions

f1, f2, . . . , fν . Our aim is to assign all points x from the sample space to one of these

groups or densities. We compare the weighted heights of the density functions to obtain

the Bayes discriminant rule

x is allocated to group j0 if j0 = argmax
j∈{1,...,ν}

πjfj(x) (5.1)

where πj is the prior probability of drawing from density fj . If we enumerate for all x

from the sample space, we produce a partition P = {P1, P2, . . . , Pν} of the sample space

using

x ∈ Pj if x is allocated to group j.

The discriminant rule, Equation (5.1), contains the unknown density functions and the

(possibly) unknown prior probabilities. Once we collect some data, we can modify this

abstract rule into a practical one. We collect training data X j = {Xj1,Xj2, . . . ,Xjnj},
drawn from fj , for j = 1, 2, . . . , ν. (The sample sizes nj are known and non-random.)

A priori there is a class structure in the population since we know which data points are

drawn from which density function. From these training data, we can construct a practical

discriminant rule and subsequent partition. Using this discriminant rule/partition, we

classify the test data Y1,Y2, . . . ,Ym, drawn from f =
∑ν

j=1 πjfj . This time, we do not

know which populations generated which data points.

An illustration of partitioning and discriminating using this Bayes discriminant rule

into three groups is given in Figure 5.4. There are three training sets, each of size 10,

denoted by the pluses, diamonds and triangles on the left diagram. The prior probabilities
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are equal to 1/3. The three (normal) density functions (not shown) are compared according

to Equation (5.1) and this yields the partition on the right: white – pluses, dark grey –

diamonds and light grey – triangles. The circles are the 30 test data points that we are

attempting to classify.

Figure 5.1: Partition and discrimination from discriminant analysis: plus – white, circle –
dark grey, triangle – light grey, circles are test data points

The usual approach (and the one used in the above example) is to estimate these

density functions (and prior probabilities if needed) and substitute into the discriminant

rule. The usual parametric approaches are the well-known and widely used linear and

quadratic discriminant techniques. However these suffer from the restrictive assumption

of normality. With non-parametric discriminant analysis we relax this assumption and thus

are able to tackle more complex cases. We will focus on kernel methods for discriminant

analysis. The monographs Silverman (1986, Chapter 6), Scott (1992, Chapter 9) and

Simonoff (1996, Chapter 7) contain summaries of kernel discriminant analysis while Hand

(1982) contains more detailed and lengthy expositions on this subject.

The structure of this chapter is as follows. In Section 5.2 there is a theoretical exposi-

tion of parametric and non-parametric discriminant analysers. The practical performance

of kernel discriminant analysers are compared with their linear and quadratic counterparts

in Section 5.3 with a simulation study and real data.

5.2 Parametric and non-parametric discriminant analysis

The two parametric methods that we describe in more detail here, linear and quadratic

discriminant analysis, are among the most commonly used. Their ease of computation

is a result from some underlying normality assumptions: (a) for linear discriminants, we

assume that the densities fj are normal with different mean vectors µj and with common
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variance matrix Σ and (b) for quadratic discriminants, we have that the densities are

normal with different means µj and different variances Σj .

For linear discriminant analysis, the key assumption is fj ∼ N(µj ,Σ). The discrimi-

nant rule, Equation (5.1), reduces to (after taking logarithms of fj)

x is allocated to group j0 if j0 = argmax
j∈{1,...,ν}

log(πj)− 1
2(x− µj)TΣ−1(x− µj). (5.2)

From this equation, we can see that resulting partition is obtained by intersections of ellip-

soids with different centres and with the same orientation. This yields partition boundaries

that are hyperplanes. For our example data from Figure 5.1, we apply the linear discrim-

inant rule to obtain the partition in Figure 5.2, using the sample mean X̄j as estimate of

µj and S = (n− ν)−1
∑ν

j=1 njSj for Σ, where Sj is the sample variance.

Figure 5.2: Partition from linear discriminant analysis

For quadratic discriminant analysis, we relax the assumption of common variance of

linear discriminant analysis i.e. we have fj ∼ N(µj ,Σj). Equation (5.1) becomes (after

taking logarithms of fj)

x is allocated to group j0 if j0 = argmax
j∈{1,...,ν}

log(πj)− 1
2 log |Σj | − 1

2(x−µj)TΣ−1
j (x−µj).

(5.3)

This discriminant rule yields a partition defined by intersections of ellipsoids with differing

centres and orientations. The boundaries are thus piecewise paraboloidal curves, as is

illustrated in Figure 5.3, obtained by replacing the means and variances with their sample

statistics.

To use the parametric discriminant rules, we replace the unknown parameters with

their usual sample estimates. To generalise these parametric methods to a non-parametric

one is straightforward. Instead of assuming a normal (or any other parametric) form for

the densities, we simply estimate the densities non-parametrically. In our case, we use
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Figure 5.3: Partition from quadratic discriminant analysis

kernel density estimators constructed from the training data. The kernel discriminant

rule (KDR) is

KDR : x is allocated to group j0 if j0 = argmax
j∈{1,...,ν}

π̂j f̂j(x;Hj) (5.4)

where f̂j(x;Hj) is the kernel density estimate corresponding to the j-th group. To il-

lustrate its implementation, the resulting partition is in Figure 5.4 where we have used

plug-in bandwidth selectors for Hj .

Figure 5.4: Partition from kernel discriminant analysis

Now that we are using kernel density estimators for discriminant analysis, selection

of appropriate bandwidths is crucial. Hand (1982) contains discussion on this question.

On one hand, we can attempt to find optimal bandwidths for optimal individual kernel

density estimates. On the other hand, we could find optimal bandwidths which directly

optimise the misclassification rate or MR, as Hall & Wand (1988) attempt for the two
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class problem. This rate is the proportion of points that are assigned to an incorrect group

based on a discriminant rule. Then we have

1−MR = P(Y is classified correctly)

= EY [1{Y is classified correctly}]

= EX
[
EY [1{Y is classified correctly}] |X 1,X 2, . . . ,X ν

]
where EY is expectation with respect to Y or

∑ν
j=1 πjfj , and EX is expectation with

respect to X 1,X 2, . . . ,X ν or π1f1, π2f2, . . . , πνfν . Hand recommends the former approach

for three reasons. First, accurate estimates of the individual density functions are useful

in their own right; second, accurate density estimates can be used in other, more complex

discriminant problems which look at measures other than the misclassification rate; and

third, direct optimisation with respect to a misclassification rate poses many difficult

mathematical obstacles.

Whilst we will not use the misclassification rate to select bandwidths, we will still use

it as our performance measure of a discriminant rule. So we need to estimate it. The

most appropriate estimate depends on whether we have test data or not. If we do, as

is the usual case for simulated data, then a simple estimate is obtained by counting the

number of Yj that are assigned to an incorrect group, divided by the total number of

data points m. On the other hand, if we do not have test data, as is the usual case for

real data, then we use the cross validation estimate of MR, as recommended by Silverman

(1986) and Hand (1982). This involves leaving out each Xji, constructing a corresponding

leave-one-out density estimate and subsequent discriminant rule. We then compare the

label assigned to Xji based on the leave-one-out discriminant rule to its correct group

label. These counts are then summed and divided by n.

5.3 Practical performance of kernel discriminant analysis

The algorithm for kernel discriminant analysis is given below. The algorithms for linear

and quadratic discriminant analysis are similar except that any kernel methods are re-

placed by the appropriate parametric methods. We put these algorithms into practice

with both simulated and real data.

Algorithm for kernel discriminant analysis

1. For each training sample X j = {Xj1,Xj2, . . . ,Xjnj}, j = 1, 2, . . . , ν, compute a

kernel density estimate

f̂(x;Hj) = n−1
j

nj∑
i=1

KHj (x−Xji).
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We can use any sensible bandwidth selector Hj .

2. If prior probabilities are available then use these. Otherwise estimate using them

using the training sample proportions π̂j = nj/n.

3. (a) Allocate test data points Y1,Y2, . . . ,Ym according to KDR/Equation (5.4) or

(b) Allocate all points x from the sample space according to KDR/Equation (5.4).

4. (a) If we have test data then the estimate of the misclassification rate is

M̂R = 1−m−1
ν∑

k=1

1{Yk is classified correctly using KDR}.

(b) If we do not have test data the cross validation estimate of the misclassification

rate is

M̂RCV = 1− n−1
ν∑

j=1

nj∑
i=1

1{Xji is classified correctly using KDR−ji}

where KDR−ji is similar to KDR except that π̂j and f̂j(·;Hj) are replaced by

their leave-one-out estimates obtained by removing Xji i.e. π̂j,−i = (nj − 1)/n

and

f̂j,−i(x;Hj,−i) = (nj − 1)−1

nj∑
i′=1
i′ 6=i

KHj,−i(x−Xj,i′).

That is, we repeat step 3 to classify all Xji using KDR−ji.

5.3.1 Simulation results for normal mixture densities

We conduct a similar comparison to the simulation studies contained in Hand (1982,

Chapter 7), examining the performance of the following discriminant analysers:

� linear discriminant (labelled LD)

� quadratic discriminant (labelled QD)

� kernel discriminant with 2-stage AMSE diagonal bandwidth matrices (labelled

KDD2)

� kernel discriminant with 2-stage SAMSE full bandwidth matrices (labelled KDS2)

� kernel discriminant with 1-stage SCV full bandwidth matrices (labelled KDSC)

The code for the kernel discriminant analysers are based on the bandwidth matrix selection

and density estimation functions in the ks library whose details are found in Appendix
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C. The code for LDA and QDA are supplied within the base R software, namely lda and

qda.

We simulate from the following normal mixture densities for 1000 trials (rather than

the 400 trials as previously), using training sample sizes n = 100 and 1000, and test data

sample size m = 1000. We use target densities D and E from previous chapters except that

now we keep track of which mixture component an observation is drawn from. Density D

contains fairly distinct components and any reasonable discriminant analyser is expected

to perform well here. Density E has three components of various shapes and sizes and

so is a more challenging case than density D. Density K is a pair of bimodal normal

mixtures, with alternating modes. Density L is a large mode separating a bimodal density

with narrower modes. For these two latter densities we expect the linear and quadratic

discriminant analysers to perform poorly since it is difficult to distinguish the different

components using only linear or quadratic cuts. Alternatively we can view densities K and

L as being highly non-normal so the assumptions of normality for the parametric methods

are invalid. Thus we hope that the kernel methods will demonstrate their efficacy here.

The formulas for these target densities are in Table 5.1 and their contour plots are in

Figure 5.5.

Before we investigate the long term properties of these discriminant analysers, we

look at more detail at the construction of an individual density estimate for density K for

n = m = 100 points in Figure 5.6 (the size of m is reduced for clarity of presentation). The

contours of the different density estimates are denoted by the solid and dashed lines. The

circles and triangles are the two groups of test data. The kernel discriminant analysers are

all able to detect the alternating bimodality whereas the parametric analysers are unable

to do so.

The average and standard deviation of misclassification rates are in Table 5.2. These

rates are computed using the simple method. From this table, we see for density D and E,

LD has inferior performance compared to QD and the kernel discriminant analysers. For

density K, our initial expectations are confirmed: KDD2, KDS2, KDSC all outperform the

linear and quadratic counterparts. For density L, the advantage of the kernel methods over

the linear method is maintained whilst it is reduced compared to the quadratic method.

The increased performance of the kernel discriminant analysers for the latter two densities

is apparent for both sample sizes. Moreover, even with the increased burden of selecting

an increased number of bandwidths which comprise the bandwidth matrix, the full matrix

selectors overall produce smaller standard deviations.

The differences between the diagonal matrix KDD2 and the full matrix KDSC and

KDS2 are more subtle than the differences between the kernel methods and the parametric

methods. We can see that both full bandwidth matrix methods KDS2 and KDSC in the
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Target
density Formula

D π1 = 1
2 , f ∼ N

([
1
−1

]
,

[
4
9

14
45

14
45

4
9

])
; π2 = 1

2 , f2 ∼ N

([
−1
1

]
,

[
4
9 0
0 4

9

])
E π1 = 3

7 , f1 ∼ N

([
−1
0

]
,

[
9
25

63
250

63
250

49
100

])
; π2 = 3

7 , f2 ∼ N

([
1
2√
3

]
,

[
9
25 0
0 49

100

])
;

π3 = 1
7 , f3 ∼ N

([
1

− 2√
3

]
,

[
9
25 0
0 49

100

])
K π1 = 1

2 , f1 ∼ 1
2N

([
−3

2
−3

2

]
,

[
4
5 −1

2
−1

2
4
5

])
+ 1

2N

([
1
2
1
2

]
,

[
4
5 −1

2
−1

2
4
5

])
π2 = 1

2 , f2 ∼ 1
2N

([
3
2
3
2

]
,

[
4
5 −1

2
−1

2
4
5

])
+ 1

2N

([
−1

2
−1

2

]
,

[
4
5 −1

2
−1

2
4
5

])
L π1 = 1

3 , f1 ∼ 1
2N

([
−3

2
0

]
,

[
3
10

1
4

1
4

3
10

])
+ 1

2N

([
3
2
0

]
,

[
3
10

1
4

1
4

3
10

])
π2 = 2

3 , f2 ∼ N

([
0
0

]
,

[
4
5

2
5

2
5 1

])
Table 5.1: Formulas for target densities D, E, K & L

Figure 5.5: Contour plots for target densities D, E, K, L for discriminant analysis: solid
contours – π1f1, dashed lines – π2f2 and dotted lines – π3f3.
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Figure 5.6: Kernel density estimates for discriminant analysers for density K: circle – solid
line, triangle – dotted line. Circles and triangles are test data
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Target density Misclassification rate
KDD2 KDS2 KDSC LD QD

n = 100,m = 1000
D mean 0.0051 0.0049 0.0041 0.0089 0.0036

SD 0.0031 0.0029 0.0024 0.0036 0.0020

E mean 0.0741 0.0738 0.0709 0.0701 0.0675
SD 0.0109 0.0108 0.0099 0.0093 0.0091

K mean 0.1094 0.1032 0.0994 0.4505 0.4431
SD 0.0141 0.0127 0.0120 0.0232 0.0203

L mean 0.1514 0.1495 0.1503 0.3408 0.1669
SD 0.0160 0.0157 0.0171 0.0179 0.0205

n = 1000,m = 1000
D mean 0.0032 0.0032 0.0031 0.0084 0.0029

SD 0.0017 0.0017 0.0017 0.0029 0.0017

E mean 0.0640 0.0640 0.0635 0.0678 0.0625
SD 0.0080 0.0079 0.0078 0.0079 0.0078

K mean 0.0895 0.0885 0.0878 0.4684 0.4666
SD 0.0090 0.0088 0.0088 0.0066 0.0068

L mean 0.1287 0.1272 0.1265 0.3340 0.1544
SD 0.0108 0.0108 0.0107 0.0000 0.0116

Table 5.2: Misclassification rates for discriminant analysers

majority of cases considered here have lower mean misclassification rates than KDD2.

Table 5.3 contains the value and standard errors for the pairwise differences in mean

misclassification rate for KDD2, KDS2 and KDSC. Our guide to statistical significance is

if the the absolute value of the difference in mean misclassification rates is more than twice

the standard error. From the table, KDS2 has significantly lower misclassification rates

than KDD2 for densities K and L; and that KDSC is significantly lower than both KDD2

for the same densities (except for density L, n = 100). As for the differences between

KDSC and KDS2, it is not clear that they are overall significantly different.

5.3.2 Results for real data

A real data set that has been previously analysed with kernel discriminants is the MBA

GMAT–GPA (Master of Business Administration Graduate Management Admissions Test

– Grade Point Average) data from Simonoff (1996). The data consist of pairs of GMAT

and GPA scores for 61 second year students at the Stern Business School at New York

University in 1995. There are 13 women and 48 men with prior probabilities πfemale =

0.35, πmale = 0.65. Simonoff investigates the performance of a kernel discriminant anal-
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Target Difference in mean misclassification rate
density KDD2 – KDS2 KDD2 – KDSC KDS2 – KDSC

n = 100,m = 1000
D difference in means 0.00017 0.00091∗ 0.00074∗

SE (difference) 0.00013 0.00012 0.00012

E difference in means 0.00030 0.00320∗ 0.00290∗

SE (difference) 0.00049 0.00047 0.00046

K difference in means 0.00614∗ 0.00993∗ 0.00380∗

SE (difference) 0.00060 0.00059 0.00055

L difference in means 0.00184∗ 0.00107 -0.00077
SE (difference) 0.00071 0.00074 0.00073

n = 1000,m = 1000
D difference in means 0.00000 0.00012 0.00013

SE (difference) 0.00008 0.00008 0.00008

E difference in means 0.00002 0.00052 0.00050
SE (difference) 0.00036 0.00036 0.00035

K difference in means 0.00099∗ 0.00167∗ -0.00068
SE (difference) 0.00040 0.00040 0.00039

L difference in means 0.00149∗ 0.00219∗ 0.00070
SE (difference) 0.00048 0.00048 0.00048

Table 5.3: Difference in mean misclassification rates for kernel discriminant analysers –
the asterisk indicates approximate statistical significance at 5%

ysers with diagonal bandwidth matrices when attempting to discriminate by sex. We

supplement this by adding our versions with full bandwidth matrices. Simonoff uses the

subjectively chosen bandwidths Hfemale = diag(2025, 0.0144),Hmale = diag(625, 0.0225)

and bandwidths from a diagonal LSCV criterion. Simonoff reports a cross validated the

misclassification rate for the diagonal LSCV selectors to be 0.21. However he does not re-

port a rate for his subjectively chosen bandwidth. So we simply calculate a cross validated

MR estimate using this same bandwidth for each leave-one-out stage; and we obtain 0.23.

For our selectors, we have 0.21 for KDD2, 0.18 for KDS2 and 0.16 for KDSC. For the

parametric estimators, LD has rate 0.28 and QD 0.20. We can see that the kernel meth-

ods, with appropriately chosen bandwidth matrices, outperform the parametric methods;

and that the kernel methods with full bandwidth matrices outperform those with diago-

nal bandwidth matrices. The partitions obtained for these discriminant analysers are in

Figure 5.7, with females represented by triangles and males circles. The partitions classes

are grey for females and white for males.

The other real data set with which we compare the different discriminant analysers is

the reef data, taken from Bowman & Azzalini (1997). These data were collected during
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Figure 5.7: Partition of MBA GMAT–GPA data: females – triangles, grey; males – circles,
white
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a survey of the sea bed wildlife lying between the coast and the Great Barrier Reef in

north-eastern Australia. We use a subset of this data set for our analysis: the 149 latitude

and longitude measurements (in degrees) of the sampling point (with negative degrees

signifying south of the Equator) along with the depth (in metres) of the sea bed. The

pairs of longitude and latitude are classified into three categories of sea bed depth: depth

≤ 20 m, 20 m ≤ depth < 32 m and depth ≥ 32 m. There are 30, 82 and 37 observations

respectively. We wish to classify all points to a depth class based solely on their longitude

and latitude. This time we do not have any prior probabilities so we use the sample

proportions.

The cross validation misclassification rates for the kernel discriminants are KDD2 –

0.309, KDS2 – 0.309 and KDSC – 0.322. For the parametric discriminants, they are LD –

0.443 and QD – 0.430. Like the MBA–GMAT data, the kernel discriminant analysers sub-

stantially outperform their parametric versions. Within the kernel discriminant analysers,

all three exhibit similar performance. The partitions that result are in Figure 5.8. The

three depth classes are denoted by the circles, triangles and pluses; and their partitions

classes are white, light grey and dark grey.

5.4 Conclusion

The flexibility of kernel density estimators to reproduce a wide range of density shapes

has been implemented advantageously in the non-parametric discriminant analysis setting.

The usual linear and quadratic discriminant analysers are unable to cope with highly

non-normal data whereas kernel discriminants encounter no such problem. As is usual

for kernel methods, diagonal bandwidth matrices are currently the norm. Our novel

contribution has been to apply full bandwidth selectors to the problem. This can possibly

lead to improvements in the performance of unconstrained kernel discriminant analysers

over their restricted diagonal counterparts.
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Figure 5.8: Partition of reef longitude–latitude data: shallow depth – circle, white; middle
depth – triangle, light grey; deepest depth – plus, dark grey
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Chapter 6

Conclusion

Our stated aim for this thesis was to develop solid theory for full bandwidth matrices for

multivariate kernel density estimation and then to demonstrate their utility in practice.

At this point, we summarise the progress we have made towards this aim.

6.1 Fixed bandwidth selectors

Fixed bandwidth selectors occupy the bulk of this thesis and it is for them that we make

the most substantial theoretical and practical progress. The current method for fixed

plug-in selectors is based on the AMSE pilot selection of Wand & Jones (1994). This pilot

selector works well with diagonal bandwidth matrices but is less effective for full bandwidth

matrices. Our innovation has been to provide an alternative SAMSE pilot selector for

full bandwidth matrices. This pilot benefits from the positive definiteness of Ψ̂4 and

parsimony (when compared to the AMSE pilot). The current method for pilot estimation

for smoothed cross validation is restricted to the scalar bandwidths. Our innovation has

been to extend it to full bandwidth matrices. To provide the theoretical justifications for

our innovations, we supplied asymptotic relative convergence rates. Although we did not

provide any new LSCV or BCV selectors, we supplied their convergence rates, using the

same mathematical framework thus providing a unified analysis of all selectors considered

in this thesis.

For fixed univariate bandwidth selectors, the understanding of their behaviour with

respect to MISE, is fairly complete. The plug-in selectors of Sheather & Jones (1991) can

be considered to have the overall best performance. On the theoretical side, these selectors

have small asymptotic variance and have the fast asymptotic relative rates of convergence

to hMISE. On the practical side, they have good performance for finite samples, considered

over a wide range of simulated and real data sets.

For the fixed multivariate bandwidth selectors we considered, we saw that in Chapter

2 the (2-stage) plug-in selectors again show themselves to be efficacious and in Chapter 3
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smoothed cross-validation selectors do so likewise. These selectors however still have two

unresolved issues that prevent a similar claim being made for the best overall bandwidth

matrix selector, as we now describe.

The first issue is how to measure the closeness between a bandwidth selector and the

MISE optimal bandwidth. In the univariate case an expansion of the MISE (ĥ) about

hMISE is

MISE(ĥ) = MISE(hMISE) + 1
2(ĥ− hMISE)2

[
∂2

∂h2
MISE(hMISE)

]−1

[1 + o(1)]

From this expansion we can see that finding the ĥ such that MISE(ĥ) is as close as possible

to MISE(hMISE) is asymptotically equivalent to finding the ĥ that is as close as possible

to hMISE i.e. minimising (ĥ − hMISE)2. On the other hand, a multivariate expansion of

the MISE is

MISE(Ĥ) = MISE(HMISE) + 1
2 vechT (Ĥ−HMISE)

[
D2

HMISE(HMISE)
]−1

× vech(Ĥ−HMISE)[1 + o(1)].

We can see that if we wish to find Ĥ such that MISE(Ĥ) is as close as possible to

MISE(HMISE) then asymptotically we should be looking for Ĥ such that the quadratic

term is as small as possible. Of course this is impossible without knowingD2
HMISE(HMISE)

which is difficult to estimate. In this thesis, we have simplified the situation by seeking

instead to find the smallest unweighted sum of the differences between Ĥ and HMISE

i.e. vechT (Ĥ−HMISE) vech(Ĥ−HMISE) which is taking a direct analogue from the one-

dimensional case. We believe that taking into account the weighting of the Hessian, i.e.

selecting Ĥ based on minimising vechT (Ĥ−HMISE)[D2
HMISE(HMISE)]−1 vech(Ĥ−HMISE),

may improve the performance of these selectors.

The second issue concerns the parameterisation of pilot bandwidth matrices. We be-

lieve that improvements may be possible if we use a more general parameterisation, es-

pecially for the first stage of pilot bandwidth selection. For plug-in selectors, we have

supplied an algorithm for selecting an appropriate scalar pilot bandwidth. We started

with MSE ψ̂r(G) in Section 2.2.1 and seek the minimiser of this. Our task is simplified by

using G = g2I. For smoothed cross validation selectors, we start with

trMSE(vech Ĥ;G) = E[vechT (Ĥ−HAMISE) vech(Ĥ−HAMISE)]

where Ĥ = Ĥ(G) and seek the G that minimises this. Again we simplify our task by

restricting G to be g2I. If we were to use the full matrix form for pilot selectors then

full bandwidth matrices would be entrenched throughout the entire bandwidth selection

algorithm. Implementing these would be future avenues of investigation.
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6.2 Variable bandwidth selectors

The ideas behind variable bandwidth matrices are conceptually simple. It appears that

varying the bandwidth to vary to the amount of smoothing according to the local con-

ditions would lead to improvements in performance. Unfortunately implementing these

variable selectors is extremely difficult. The sample point selector has had more success

with practical algorithms than the balloon version. Abramson’s selector is the bench-

mark in variable kernel density estimation. Instead of generalising this for full bandwidth

matrices, we have taken a side path into partitioned kernel density estimators where the

bandwidth matrix function is a fixed (full) bandwidth matrix within each partition class.

We select our partition using multivariate clustering so the performance depends heavily

on the latter. These selectors have shown some promise, outperforming Abramson’s selec-

tor in certain cases. We have only considered only a small range of possibilities for these

partitioned selectors and so further research is required.

6.3 Discriminant analysis

Non-parametric discriminant analysis is widely recognised as superior to parametric dis-

criminant analysis. Most attempts so far at kernel discriminant analysis have focused on

diagonal bandwidth matrices. We apply the advantages of full bandwidth matrices for

density estimation to discriminant analysis. We see that in more complicated discrimi-

nant problems, full bandwidth matrices can give extra flexibility to yield a more accurate

discrimination.
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Appendix A

Notation

Vectors and matrices

Let A be a d× d matrix with elements [A]ij and a be a d-vector with elements [a]i.

vec A is vector obtained by vertically stacking elements of A

vech A is vector obtained by vertically stacking elements of lower triangular half of A

dg A is A with all its non-diagonal elements set to zero

Dd is duplication matrix of order d

I, Id is d× d identity matrix

J,Jd is d× d matrix of ones

|a| is sum of elements of a

‖a‖ is Euclidean norm of a

|A| is determinant of A

ei is i-th elementary vector

Eij is (i, j)-th elementary matrix

⊗ is Kronecker product operator

d′ is 1
2d(d+ 1) is dimension of vech’ed d× d matrix

Functions, constants, variables

f is unknown target density function

K is unscaled kernel function

KH is scaled kernel function, scaled with bandwidth H

µj(K) is j-th central moment of K

supp(K,x) is support of K(· − x)

f ∗ g is convolution of functions f and g

R(f) is
∫

Rd f(x)2 dx

Df(x) is derivative of f with respect to x
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D2f(x) is Hessian of f with respect to x

DHf(x) is derivative of f with respect to vechH

D2
Hf(x) is Hessian of f with respect to vechH

f (r)(x) is r-th partial derivative of f with respect to x where r = (r1, r2, . . . , rn)

ψr is integrated density derivative functional

Ψ4 is matrix of fourth order ψr functionals

Θ6 is matrix of sixth order ψr functionals

φΣ(x− µ) is multivariate normal density with mean µ and variance Σ

ϕA(x) is φA(x) vec(A−1xxTA−1 −A−1)

H is the space of all symmetric positive definite matrices

B(x, ε) is ball with centre x and radius ε

P = {P1, P2, . . . , Pν} is partition with ν classes of sample space

fPj is f restricted to Pj

Ψ4,Pj is Ψ4 restricted to Pj

πj is probability mass of f in Pj , for variable kernel density estimation

Error measures

ISE is Integrated Squared Error

MSE is Mean Squared Error

AMSE is Asymptotic Mean Squared Error

RMSE is Relative Mean Squared Error

SAMSE is Sum of Asymptotic Relative Mean Squared Error

SAMSEj is j-th order SAMSE

MISE is Mean Integrated Squared Error

MIAE is Mean Integrated Absolute Error

AMISE is Asymptotic Mean Integrated Squared Error

AMISE′ is a higher order expansion of AMISE

ABias is Asymptotic Bias

AVar is Asymptotic Variance

ABias′ is higher order Asymptotic Bias

AVar′ is higher order Asymptotic Variance

AMSE′ is higher order Asymptotic Mean Squared Error

PI is Plug-In

LSCV is Least Squares Cross Validation

BCV is Biased Cross Validation

SCV is Smoothed Cross Validation
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Data

X is data vector of dimension d

X1,X2, . . . ,Xn is random sample of size n

X∗ is pre-scaled/pre-sphered version of X

S is sample variance

SD is dg S

S∗D is variance of pre-scaled data

{C1, C2, . . . , Cν} is set of ν clusters

d(Ci, Cj) is dissimilarity between clusters Ci and Cj

W (ν) is within cluster sum of squares for ν clusters

Kernel estimates

f̂(x;H) is fixed kernel density estimate

f̂−i(x;H) is leave-one-out estimate

f̂SP(x;Ω) is sample point estimate

f̂B(x;H(x)) is balloon estimate

f̂P (x;G) is pilot kernel density estimate with pilot bandwidth G

f̂∗(x;H) is bootstrap kernel density estimate

f̂∗(x∗;H∗) is kernel density estimate on pre-transformed scale

f̂PT(x;Ω) is partitioned kernel density estimate with bandwidth function Ω

f̂PT(x;Ω,P) is partitioned kernel density estimate with bandwidth Ω, partition P
ψ̂r is leave-in-diagonals estimate, using K(r)

ψ̃r is leave-out-diagonals estimate, using K(r)

ψ̌r is leave-out-diagonals estimate, using K(r) ∗K(r)

ψ̂NR
r is normal reference estimate of ψr

Ψ̂4 is estimate of Ψ4 with ψ̂r

Ψ̃4 is estimate of Ψ4 with ψ̃r

Ψ̌4 is estimate of Ψ4 with ψ̌r

Bandwidth selectors

H is bandwidth matrix

H∗ is pre-scaled/pre-sphered bandwidth

HMISE is MISE-optimal bandwidth

HAMISE is AMISE-optimal bandwidth

ĤPI is plug-in bandwidth selector
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APPENDIX A. NOTATION

ĤPI,AMSE is plug-in bandwidth selector, with AMSE pilot

ĤPI,SAMSE is plug-in bandwidth selector, with SAMSE pilot

ĤMS is maximally smoothed bandwidth selector

ĤLSCV is LSCV bandwidth selector

ĤBCV is BCV bandwidth selector

ĤSCV is SCV bandwidth selector

Ω is bandwidth selector function

G is pilot bandwidth selector

gr,AMSE is r-th order AMSE pilot, for plug-in

gj,SAMSE is j-th order SAMSE pilot, for plug-in

g0 is optimal pilot, for SCV

Bandwidth selectors labels

Fm, Fm∗ is label for m-stage full AMSE selectors: pre-scaled, pre-sphered

Dm, Dm∗ is label for m-stage diagonal AMSE selectors: pre-scaled, pre-sphered

Sm, Sm∗ is label for m-stage full SAMSE selectors: pre-scaled pre-sphered

L is label for full LSCV selector

DL is label for diagonal LSCV selector

B1, B2 are labels for full BCV1 and BCV2 selectors

DB2 is label for diagonal BCV2 selectors

SC, SC∗ is label for 1-stage full SCV selectors: pre-scaled pre-sphered

AL is label for Abramson’s LSCV selector

PL is label for pre-clustered LSCV selector

SL is label for Sain’s LSCV selector

KDXX is label for kernel discriminant analyser, with XX selector

Discriminant analysis

X 1,X 2, . . . ,X ν is ν training data samples

X j = {Xj1,Xj2, . . . ,Xjnj} is j-th training data sample of size nj

Y1,Y2, . . . ,Ym is test data sample of size m

fj is density for j-th discriminant group

πj is prior probability of fj

f̂j(x;Hj) is kernel density estimate for j-th training data sample

π̂j is sample proportion for j-th training data sample

f̂j,−i(x;Hj,−i) is kernel density estimate for j-th training data sample, leaving out Xji

π̂j,−i is sample proportion for j-th training data sample, leaving out Xji
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KDR is kernel discriminant rule

KDR−ji is kernel discriminant rule KDR, leaving out Xji

MR is misclassification rate

M̂R is simple estimate of MR

M̂RCV is cross validated estimate of MR
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Appendix B

Supplementary results

Tables B.1 and B.2 contain the plug-in bandwidth matrix that attains the median of the

simulations trials. Table B.1 is for pre-sphered data. The top half is for sample size

n = 100 and the lower half is for n = 1000. The first column is the density label, the next

is HMISE, the next four are the bandwidths which achieve the median ISE(Ĥ) for F1∗, S1∗,

F2∗, S2∗ respectively. Table B.2 is for pre-scaled data i.e. F1, S1, F2, S2 and D2. Tables

B.3 and B.4 contain the results from ISE calculations. The second column is the optimal

MISE (i.e. MISE(HMISE)) which is then followed by the mean and standard deviation of

the ISEs. Table B.5 is similar to Tables B.1 and B.2 but for the cross-validation selectors

DL, DB2, L, B1, B2, SC and SC∗. Table B.6 is the cross-validation counterpart to Tables

B.3 and B.4, whereas Table B.7 is for the variable selectors AL, PL, and SL, along with

S2, L and SC for comparison.
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APPENDIX B. SUPPLEMENTARY RESULTS
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MISE(HMISE) ISE(Ĥ)
F1∗ S1∗ F2∗ S2∗

n = 100
A 0.00863 mean 0.01009 0.01019 0.01065 0.01066

SD 0.00403 0.00405 0.00425 0.00425

B 0.00717 mean 0.00806 0.00813 0.00828 0.00840
SD 0.00250 0.00253 0.00263 0.00264

C 0.01404 mean 0.04184 0.04175 0.02620 0.03016
SD 0.00399 0.00397 0.00482 0.00456

D 0.01034 mean 0.02101 0.01707 0.01818 0.01482
SD 0.00332 0.00362 0.00350 0.00368

E 0.00864 mean 0.00975 0.00969 0.00935 0.00932
SD 0.00255 0.00251 0.00263 0.00260

F 0.00990 mean 0.01154 0.01168 0.01215 0.01222
SD 0.00460 0.00464 0.00484 0.00487

n = 1000
A 0.00212 mean 0.00220 0.00222 0.00224 0.00224

SD 0.00066 0.00066 0.00066 0.00066

B 0.00181 mean 0.00193 0.00194 0.0019 0.00194
SD 0.00050 0.00050 0.00049 0.00049

C 0.00341 mean 0.01048 0.01048 0.00478 0.00575
SD 0.00115 0.00115 0.00104 0.00106

D 0.00253 mean 0.00581 0.00378 0.00456 0.00314
SD 0.00082 0.00075 0.00075 0.00068

E 0.00216 mean 0.00239 0.00238 0.00222 0.00223
SD 0.00060 0.00060 0.00055 0.00055

F 0.00244 mean 0.00253 0.00254 0.00256 0.00257
SD 0.00075 0.00076 0.00076 0.00076

Table B.3: ISEs for plug-in bandwidth matrices with pre-sphering for normal mixture
densities.
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APPENDIX B. SUPPLEMENTARY RESULTS

MISE (HMISE) ISE(Ĥ)
F1 S1 F2 S2 D2

n = 100
A 0.00863 mean 0.01011 0.01015 0.01067 0.01063 0.00976

SD 0.00405 0.00405 0.00429 0.00426 0.00419

B 0.00717 mean 0.00805 0.00809 0.00828 0.00837 0.00789
SD 0.00252 0.00253 0.00265 0.00264 0.00259

C 0.01404 mean 0.04141 0.04143 0.02583 0.02998 0.02597
SD 0.00396 0.00396 0.00478 0.00454 0.00429

D 0.01034 mean 0.01195 0.01204 0.01174 0.01174 0.01226
SD 0.00354 0.00353 0.00348 0.00348 0.00336

E 0.00864 mean 0.00982 0.00984 0.00960 0.00957 0.00981
SD 0.00258 0.00257 0.00268 0.00267 0.00255

F 0.00990 mean 0.02177 0.02138 0.02443 0.02291 0.02263
SD 0.00628 0.00617 0.00693 0.00670 0.00668

n = 1000
A 0.00212 mean 0.00221 0.00221 0.00224 0.00224 0.00216

SD 0.00066 0.00066 0.00066 0.00066 0.00066

B 0.00181 mean 0.00193 0.00194 0.00190 0.00194 0.00186
SD 0.00050 0.00050 0.00049 0.00049 0.00048

C 0.00341 mean 0.01046 0.01047 0.00477 0.00575 0.00485
SD 0.00115 0.00115 0.00104 0.00106 0.00098

D 0.00253 mean 0.00295 0.00280 0.00269 0.00267 0.00298
SD 0.00073 0.00066 0.00065 0.00062 0.00063

E 0.00216 mean 0.00240 0.00239 0.00225 0.00226 0.00240
SD 0.00060 0.00059 0.00055 0.00055 0.00055

F 0.00244 mean 0.00424 0.00427 0.00457 0.00436 0.00479
SD 0.00098 0.00094 0.00101 0.00098 0.00099

Table B.4: ISEs for plug-in bandwidth matrices with pre-scaling for normal mixture den-
sities.
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APPENDIX B. SUPPLEMENTARY RESULTS

MISE (HMISE) ISE(Ĥ)
L B1 B2 SC SC∗ DL DB2

n = 100
A 0.00863 mean 0.01746 0.01100 0.01003 0.00974 0.00979 0.01265 0.00907

SD 0.01579 0.00451 0.00377 0.00399 0.00400 0.00796 0.00387

B 0.00717 mean 0.01340 0.00879 0.00799 0.00835 0.00840 0.00934 0.00782
SD 0.00863 0.00363 0.00236 0.00236 0.00236 0.00428 0.00211

C 0.01404 mean 0.02433 0.03704 0.07303 0.03665 0.03692 0.01748 0.08023
SD 0.01478 0.02279 0.00259 0.00421 0.00425 0.00756 0.00222

D 0.01034 mean 0.01676 0.01514 0.01406 0.01262 0.01749 0.01409 0.02039
SD 0.00885 0.00748 0.00431 0.00393 0.00408 0.00533 0.00573

E 0.00864 mean 0.01438 0.01212 0.01067 0.01069 0.01066 0.01195 0.01384
SD 0.00850 0.00923 0.00232 0.00286 0.00280 0.00535 0.00240

F 0.00990 mean 0.02105 0.01341 0.01154 0.01352 0.01123 0.02328 0.03806
SD 0.01860 0.00760 0.00430 0.00532 0.00459 0.00889 0.00926

n = 1000
A 0.00212 mean 0.00283 0.00236 0.00219 0.00218 0.00218 0.00255 0.00220

SD 0.00121 0.00082 0.00074 0.00074 0.00074 0.00092 0.00080

B 0.00181 mean 0.00226 0.00222 0.00213 0.00199 0.00199 0.00214 0.00200
SD 0.00085 0.00055 0.00047 0.00053 0.00053 0.00065 0.00055

C 0.00341 mean 0.00412 0.00589 0.01890 0.00696 0.00697 0.00396 0.00357
SD 0.00143 0.00325 0.01927 0.00112 0.00112 0.00116 0.00088

D 0.00253 mean 0.00303 0.00395 0.00477 0.00274 0.00330 0.00328 0.00312
SD 0.00101 0.00247 0.00301 0.00067 0.00074 0.00079 0.00064

E 0.00216 mean 0.00251 0.00295 0.00288 0.00240 0.00238 0.00259 0.00247
SD 0.00077 0.00110 0.00104 0.00063 0.00063 0.00060 0.00061

F 0.00244 mean 0.00324 0.00273 0.00252 0.00276 0.00250 0.00516 0.00489
SD 0.00138 0.00096 0.00084 0.00089 0.00085 0.00128 0.00114

Table B.6: ISEs for cross-validation bandwidth matrices for normal mixture densities.
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MISE (HMISE) ISE
S2 L SC AL SL PL

n = 100
A 0.00863 mean 0.01063 0.01746 0.00974 0.01021 0.01090 0.01802

SD 0.00426 0.01579 0.00399 0.00693 0.00582 0.01326

B 0.00717 mean 0.00837 0.01340 0.00835 0.00921 0.01039 0.01638
SD 0.00264 0.00863 0.00236 0.00383 0.00664 0.01012

D 0.01034 mean 0.01174 0.01676 0.01262 0.01303 0.01502 0.02100
SD 0.00348 0.00885 0.00393 0.00473 0.00746 0.01192

E 0.00864 mean 0.00957 0.01438 0.01069 0.01048 0.01307 0.01731
SD 0.00267 0.00850 0.00286 0.00494 0.00741 0.01219

G 0.07166 mean 0.08546 0.09355 0.10153 0.07960 0.12373 0.09148
SD 0.01474 0.04040 0.01577 0.01981 0.06958 0.05525

H - mean 0.09378 0.09060 0.10934 0.07168 0.09373 0.08247
SD 0.01638 0.02951 0.01752 0.01745 0.03405 0.03977

n = 1000
A 0.00212 mean 0.00224 0.00283 0.00218 0.00223 0.00226 0.00295

SD 0.00066 0.00121 0.00074 0.00074 0.00072 0.00127

B 0.00181 mean 0.00194 0.00226 0.00199 0.00209 0.00223 0.00254
SD 0.00049 0.00085 0.00053 0.00059 0.00059 0.00094

D 0.00253 mean 0.00267 0.00303 0.00274 0.00282 0.00310 0.00344
SD 0.00062 0.00101 0.00067 0.00072 0.00079 0.00126

E 0.00216 mean 0.00226 0.00251 0.00240 0.00207 0.00265 0.00286
SD 0.00055 0.00077 0.00063 0.00051 0.00090 0.00099

G 0.01837 mean 0.02179 0.02041 0.02383 0.01932 0.05079 0.01498
SD 0.00344 0.00408 0.00359 0.00354 0.02755 0.00550

H - mean 0.02620 0.01980 0.02929 0.01650 0.03305 0.01937
SD 0.00399 0.00343 0.00426 0.00302 0.01731 0.00369

Table B.7: ISEs for fixed and variable bandwidth matrices for mixture densities.
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Appendix C

Software

All the algorithms for the fixed selectors are now available in an R library: ks. The current

release is 1.1 and is available in two versions from:

� Unix – http://www.maths.uwa.edu.au/∼martin/software/ks 1.1.tar.gz

� Windows – http://www.maths.uwa.edu.au/∼martin/software/ks 1.1.zip

The variable selectors are not included in this release since there is still much development

required till they can be made for general use (though they are available from the author).

This appendix contains the help guide for this library, included as part of the release.
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Hbcv, Hbcv.diag Biased cross-validation (BCV) bandwidth matrix selector for
bivariate data

Description

BCV bandwidth matrix for bivariate data.

Usage

Hbcv(x, whichbcv=1, Hstart)

Hbcv.diag(x, whichbcv=1, Hstart)

Arguments

x matrix of data values

whichbcv 1 = BCV1, 2 = BCV2. See details below

Hstart initial bandwidth matrix, used in numerical optimisation

Details

Use Hbcv for full bandwidth matrices and Hbcv.diag for diagonal bandwidth matrices.

There are two types of BCV criteria considered here. They are known as BCV1 and

BCV2, from Sain, Baggerly & Scott (1994) and they only differ slightly. These BCV

surfaces can have multiple minima and so it can be quite difficult to locate the most

appropriate minimum.

If Hstart is not given then it defaults to k*var(x) where k =
[

4
n(d+2)

]2/(d+4)
, n =

sample size, d = dimension of data.

Value

BCV bandwidth matrix.

Note

It can be difficult to find an appropriate (local) minimum of the BCV criterion. Some

times, there can be no local minimum at all so there may be no finite BCV selector.
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References

Sain, S.R, Baggerly, K.A. & Scott, D.W. (1994) Cross-validation of multivariate den-

sities. Journal of the American Statistical Association. 82, 1131-1146.

Duong, T. & Hazelton, M.L. (2004) Cross-validation bandwidth matrices for multivari-

ate kernel density estimation. Submitted for publication.

See Also

Hlscv, Hscv

Examples

data(faithful)
Hbcv(faithful)
Hbcv.diag(faithful)

Hkda, Hkda.diag Bandwidth matrix selectors for kernel discriminant analysis
for bivariate data

Description

Bandwidth matrices for kernel discriminant analysis for bivariate data.

Usage

Hkda(x, x.group, Hstart, bw="plugin", nstage=2, pilot="samse",

pre="sphere")

Hkda.diag(x, x.group, bw="plugin", nstage=2, pilot="samse",

pre="sphere")

Arguments

x matrix of training data values

x.group vector of group labels for training data

bw bandwidth: "plugin" = plug-in, "lscv" = LSCV, "scv" = SCV

nstage number of stages in the plug-in bandwidth selector (1 or 2)

pilot "amse"=AMSE-optimal pilot bandwidths, "samse"=single SAMSE-

optimal pilot bandwidth

pre "scale" = pre-scaling, "sphere" = pre-sphering

Hstart (stacked) matrix of initial bandwidth matrices, used in numerical op-

timisation
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Details

The values that valid for bw are "plugin", "lscv" and "scv" for Hkda. These in turn

call Hpi, Hlscv and Hscv. For plugin selectors, all of nstage, pilot and pre need to

be set. For SCV selectors, currently nstage is always programmed to be one but the

other two need to be set. For LSCV selectors, none of them are required.

For Hkda.diag, only "plugin" or "lscv" are valid which in turn call Hpi.diag and

Hlscv.diag. Again, nstage, pilot and pre are available for Hpi.diag but not re-

quired for Hlscv.diag.

Value

Stacked matrix of bandwidth matrices for each training data group.

References

Simonoff, J. S. (1996) Smoothing Methods in Statistics. Springer-Verlag. New York.

See Also

kda.kde, Hpi, Hpi.diag, Hlscv, Hlscv.diag, Hscv

Examples

library(MASS)
data(iris)
iris.mat <- rbind(iris[,,1], iris[,,2], iris[,,3])
ir <- iris.mat[,c(1,2)]
ir.gr <- iris.mat[,5]

Hkda(ir, ir.gr, bw="scv", pre="scale")
Hkda.diag(ir, ir.gr, bw="plugin", pre="scale")

Hlscv Least-squares cross-validation (LSCV) bandwidth matrix se-
lector for bivariate data

Description

LSCV bandwidth matrix for bivariate data.

Usage

Hlscv(x, Hstart)

Hlscv.diag(x, Hstart)

137



APPENDIX C. SOFTWARE

Arguments

x matrix of data values

Hstart initial bandwidth matrix, used in numerical optimisation

Details

Use Hlscv for full bandwidth matrices and Hlscv.diag for diagonal bandwidth ma-

trices.

If Hstart is not given then it defaults to k*var(x) where k =
[

4
n(d+2)

]2/(d+4)
, n =

sample size, d = dimension of data.

Value

LSCV bandwidth matrix.

References

Sain, S.R, Baggerly, K.A & Scott, D.W. (1994) Cross-validation of multivariate den-

sities. Journal of the American Statistical Association. 82, 1131-1146.

Duong, T. & Hazelton, M.L. (2004) Cross-validation bandwidth matrices for multivari-

ate kernel density estimation. Submitted for publication.

See Also

Hbcv, Hscv

Examples

data(faithful)
Hlscv(faithful)
Hlscv.diag(faithful)

Hmise.mixt, Hamise.mixt

MISE- and AMISE-optimal bandwidth matrix selectors for
normal mixture densities

Description

For normal mixture densities, we have a closed form for the MISE and AMISE. So

in these cases, we can numerically minimise these criteria to find MISE- and AMISE-

optimal matrices.
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Usage

Hmise.mixt(mus, Sigmas, props, samp, Hstart)

Hamise.mixt(mus, Sigmas, props, samp, Hstart)

Arguments

mus (stacked) matrix of mean vectors

Sigmas (stacked) matrix of variance matrices

props vector of mixing proportions

samp sample size

Hstart initial bandwidth matrix, used in numerical optimisation

Details

For normal mixture densities, the MISE and AMISE have exact formulas. See Wand

& Jones (1995).

If Hstart is not given then it defaults to k*var(x) where k =
[

4
n(d+2)

]2/(d+4)
, n =

sample size, d = dimension of data.

Value

Full MISE- or AMISE-optimal bandwidth matrix. Please note that diagonal forms of

these matrices are not available.

References

Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall. London.

Examples

mus <- rbind(c(-3/2,0), c(3/2,0))
Sigmas <- rbind(diag(c(1/16, 1)), rbind(c(1/16, 1/18), c(1/18, 1/16)))
props <- c(2/3, 1/3)
samp <- 100
Hmise.mixt(mus, Sigmas, props, samp)
Hamise.mixt(mus, Sigmas, props, samp)
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Hpi, Hpi.diag Plug-in bandwidth matrix selector for bivariate data

Description

Plug-in bandwidth matrix for bivariate data.

Usage

Hpi(x, nstage=2, pilot="samse", pre="sphere", Hstart)

Hpi.diag(x, nstage=2, pilot="amse", pre="scale")

Arguments

x matrix of data values

nstage number of stages in the plug-in bandwidth selector (1 or 2)

pilot "amse"=AMSE-optimal pilot bandwidths, "samse"=single SAMSE-

optimal pilot bandwidth

pre "scale" = pre-scaling, "sphere" = pre-sphering

Hstart initial bandwidth matrix, used in numerical optimisation

Details

Use Hpi for full bandwidth matrices and Hpi.diag for diagonal bandwidth matrices.

For AMSE pilot bandwidths, see Wand & Jones (1994). For SAMSE pilot bandwidths,

see Duong & Hazelton (2003). The latter is a modification of the former, in order

to remove any possible problems with non-positive definiteness. Both of these pilot

bandwidths require numerical optimisation.

For details on the pre-transformations in pre, see pre.sphere and pre.scale.

If Hstart is not given then it defaults to k*var(x) where k =
[

4
n(d+2)

]2/(d+4)
, n =

sample size, d = dimension of data.

Value

Plug-in bandwidth matrix.
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References

Wand, M.P. & Jones, M.C. (1994) Multivariate plugin bandwidth selection. Computa-

tional Statistics 9, 97-116.

Duong, T. & Hazelton, M.L. (2003) Plug-in bandwidth matrices for bivariate kernel

density estimation. Journal of Nonparametric Statistics 15, 17-30.

Examples

data(faithful)
Hpi(faithful, nstage=1, pilot="amse", pre="scale")
Hpi(faithful, nstage=2, pilot="samse", pre="sphere")
Hpi.diag(faithful, nstage=2, pilot="amse", pre="scale")

Hscv Smoothed cross-validation (SCV) bandwidth matrix selector
for bivariate data

Description

SCV bandwidth matrix for bivariate data.

Usage

Hscv(x, pre="sphere", Hstart)

Arguments

x matrix of data values

pre "scale" = pre-scaling, "sphere" = pre-sphering

Hstart initial bandwidth matrix, used in numerical optimisation

Details

This SCV selector is a generalisation of the univariate SCV selector of Jones, Marron

& Park (1991).

For details on the pre-transformations in pre, see pre.sphere and pre.scale.

If Hstart is not given then it defaults to k*var(x) where k =
[

4
n(d+2)

]2/(d+4)
, n =

sample size, d = dimension of data.

Value

Full SCV bandwidth matrix. Please note that a diagonal version of this selector is not

available.
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References

Jones, M.C., Marron, J. S. & Park, B.U. (1991) A simple root n bandwidth selector.

The Annals of Statistics 19, 1919–1932.

Duong, T. & Hazelton, M.L. (2004) Cross-validation bandwidth matrices for multivari-

ate kernel density estimation. Submitted for publication.

See Also

Hlscv, Hbcv

Examples

data(faithful)
Hscv(faithful)

kda, pda, compare Kernel and parametric discriminant analysis

Description

Kernel and parametric discriminant analysis.

Usage

kda(x, x.group, Hs, y, prior.prob=NULL)

pda(x, x.group, y, prior.prob=NULL, type="quad")

compare(x.group, est.group)

Arguments

x matrix of training data values

x.group vector of group labels for training data

est.group vector of estimated group labels

y matrix of test data

Hs (stacked) matrix of bandwidth matrices

prior.prob vector of prior probabilities

type "line" = linear discriminant, "quad" = quadratic discriminant
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Details

If you have prior probabilities then set prior.prob to these. Otherwise set prior.prob

=NULL (the default) and the sample proportions are used as the estimates for the prior

probabilities.

The parametric discriminant analysers use the code from the MASS library namely lda

and qda for linear and quadratic discriminants.

Value

The discriminant analysers are kda and pda and these return a vector of group labels

assigned via discriminant analysis. If the test data y are given then these are classified.

Otherwise the training data x are classified.

The function compare creates a comparison between the true group labels x.group

and the estimated ones est.group. It returns a list with fields

cross cross-classification table with the rows indicating the true group and

the columns the estimated group

error misclassification rate (MR) where

MR =
number of points wrongly classified

total number of points

Note that this MR is only suitable when we have test data. If we don’t have test data,

then the cross validated estimate is more appropriate. See Silverman (1986).

References

Silverman, B. W. (1986) Data Analysis for Statistics and Data Analysis. Chapman &

Hall. London.

Simonoff, J. S. (1996) Smoothing Methods in Statistics. Springer-Verlag. New York

Venables, W.N. & Ripley, B.D. (1997) Modern Applied Statistics with S-PLUS. Springer-

Verlag. New York.

See Also

kda.kde, pda.pde

Examples

library(MASS)
data(iris)
iris.mat <- rbind(iris[,,1], iris[,,2], iris[,,3])
ir <- iris.mat[,c(1,2)]
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ir.gr <- iris.mat[,5]

H <- Hkda(ir, ir.gr, bw="plugin", pre="scale")
kda.gr <- kda(ir, ir.gr, H, ir)
lda.gr <- pda(ir, ir.gr, ir, type="line")
qda.gr <- pda(ir, ir.gr, ir, type="quad")

compare(kda.gr, ir.gr)
compare(qda.gr, ir.gr)
compare(lda.gr, ir.gr)

kda.kde, pda.pde Density estimates for kernel and parametric discriminant
analysis

Description

Density estimates for kernel and parametric discriminant analysis.

Usage

kda.kde(x, x.group, Hs, gridsize, supp=3.7, eval.points=NULL)

pda.pde(x, x.group, gridsize, type="quad", xlim, ylim)

Arguments

x matrix of training data values

x.group vector of group labels for training data

Hs (stacked) matrix of bandwidth matrices

gridsize vector of number of grid points

supp effective support for standard normal is [-supp, supp]

eval.points points that density estimate is evaluated at

type "line" = linear discriminant, "quad" = quadratic discriminant

xlim, ylim x-axis, y-axis limits

Details

The kernel density estimate is based on kde.

If gridsize is not set to a specific value, then it defaults to 100 grid points in each co-

ordinate direction i.e. c(100,100). Not required to be set if specifying eval.points.

If eval.points is not specified, then the density estimate is automatically computed

over a grid whose resolution is controlled by gridsize (a grid is required for plotting).
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The parametric discriminant analysers use the code from the MASS library namely lda

and qda for linear and quadratic discriminants.

If xlim and ylim are not specified then they default to be 10 % bigger than the range

of the data values.

Value

Density estimate for discriminant analysis is an object of class dade which is a list

with 6 fields

x data points - same as input

eval.points points that density estimate is evaluated at

estimate density estimate at eval.points

H bandwidth matrices

prior.prob sample proportions of each group

type one of "kernel", "linear", "quadratic" indicating the type of dis-

criminant analyser used.

References

Simonoff, J. S., (1996) Smoothing Methods in Statistics, Springer-Verlag. New York.

Venables, W.N. & Ripley, B.D. (1997) Modern Applied Statistics with S-PLUS (3rd

ed.), Springer-Verlag. New York.

See Also

plot.dade, pda, kda, kde

Examples

library(MASS)
data(iris)
iris.mat <- rbind(iris[,,1], iris[,,2], iris[,,3])
ir <- iris.mat[,c(1,2)]
ir.gr <- iris.mat[,5]

H <- Hkda(ir, ir.gr, bw="plugin", pre="scale")
kda.gr <- kda(ir, ir.gr, H, ir)
fhat <- kda.kde(ir, ir.gr, H, gridsize=c(250,250))

qda.gr <- pda(ir, ir.gr, ir, type="quad")
qda.fhat <- pda.pde(ir, ir.gr, gridsize=c(250,250))
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kde Kernel density estimate for bivariate data

Description

Kernel density estimate for bivariate data.

Usage

kde(x, H, gridsize, supp=3.7, eval.points)

Arguments

x matrix of data values

H bandwidth matrix

gridsize vector of number of grid points

supp effective support for standard normal is [-supp, supp]

eval.points points that density estimate is evaluated at

Details

The kernel density estimate is computed exactly i.e. binning is not used.

If gridsize is not set to a specific value, then it defaults to 50 grid points in each

co-ordinate direction i.e. c(50,50). Not required to be set if specifying eval.points.

If eval.points is not specified, then the density estimate is automatically computed

over a grid whose resolution is controlled by gridsize (a grid is required for plotting).

Value

Kernel density estimate is an object of class kde which is a list with 4 fields

x data points - same as input

eval.points points that density estimate is evaluated at

estimate density estimate at eval.points

H bandwidth matrix

References

Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall. London.
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See Also

plot.kde

Examples

data(faithful)
Hpi <- Hpi(faithful)
fhat <- kde(faithful, Hpi)

ise, mise, amise ISE, MISE and AMISE of kernel density estimates for normal
and t mixture densities

Description

The global errors ISE (Integrated Squared Error), MISE (Mean Integrated Squared

Error) and AMISE (Asymptotic Mean Integrated Squared Error) of kernel density

estimates for normal and t mixture densities.

Usage

ise.mixt(x, H, mus, Sigmas, props, lower, upper, gridsize, stepsize)

iset.mixt(x, H, mus, Sigmas, dfs, props, lower, upper, gridsize,

stepsize)

mise.mixt(H, mus, Sigmas, props, samp)

amise.mixt(H, mus, Sigmas, props, samp)

Arguments

x matrix of data values

H bandwidth matrix

mus (stacked) matrix of mean vectors

Sigmas (stacked) matrix of variance matrices

dfs vector of degrees of freedom

props vector of mixing proportions

samp sample size

lower, upper vectors of lower, upper bounds for numerical integration

gridsize vector of number of points in each dimension

stepsize vector of step sizes in each dimension
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Details

For normal mixture densities, the ISE, MISE and AMISE all have exact formulas.

See Wand & Jones (1995). For the t mixture densities, we resort to using numerical

integration, using a simple Riemann sum. A grid is set up and the function values are

computed and then multiplied by the area of the grid element to give an approximation

of the volume under the curve. The resolution of the grid is given either by gridsize

or stepsize.

Value

ISE, MISE or AMISE value.

Note

Remember that ISE is a random variable that depends on the data x; and that MISE

and AMISE are non-random and don’t depend on the data.

References

Wand, M.P. & Jones, M.C. (1995) Kernel Smoothing. Chapman & Hall. London.

Examples

samp <- 100
mus <- rbind(c(-3/2,0), c(3/2,0))
Sigmas <- rbind(diag(c(1/16, 1)), rbind(c(1/16, 1/18), c(1/18, 1/16)))
props <- c(2/3, 1/3)
x <- rmvnorm.mixt(samp, mus, Sigmas, props)
H <- Hpi(x)
ise.mixt(x, H, mus, Sigmas, props, stepsize=0.01)
mise.mixt(H, mus, Sigmas, props, samp)
amise.mixt(H, mus, Sigmas, props, samp)

dfs <- c(7,5)
x <- rmvt.mixt(samp, mus, Sigmas, dfs, props)
H <- Hpi(x)
iset.mixt(x, H, mus, Sigmas, dfs, props, lower=c(-5,-5), upper=c(5,5))

rmvnorm.mixt, dmvnorm.mixt

Multivariate normal mixture distribution

Description

Random generation and density values from multivariate normal mixture distribution.
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Usage

rmvnorm.mixt(n=100, mus=c(0,0), Sigmas=diag(2), props=1)

dmvnorm.mixt(x, mus, Sigmas, props)

Arguments

n number of random variates

x matrix of quantiles

mus (stacked) matrix of mean vectors

Sigmas (stacked) matrix of variance matrices

props vector of mixing proportions

Details

rmvnorm.mixt is based on the rmvnorm function from the mvtnorm library.

Value

Multivariate normal mixture random vectors and density values.

See Also

rmvt.mixt, dmvt.mixt

Examples

mus <- rbind(c(-3/2,0), c(3/2,0))
Sigmas <- rbind(diag(c(1/16, 1)), rbind(c(1/16, 1/18), c(1/18, 1/16)))
props <- c(2/3, 1/3)
x <- rmvnorm.mixt(1000, mus, Sigmas, props)
dens <- dmvnorm.mixt(x, mus, Sigmas, props)

rmvt.mixt, dmvt.mixt

Multivariate t mixture distribution

Description

Random generation and density values from multivariate t mixture distribution.

Usage

rmvt.mixt(n=100, mus=c(0,0), Sigmas=diag(2), dfs=3, props=1)

dmvt.mixt(x, mus, Sigmas, dfs, props)
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Arguments

n number of random variates

x matrix of quantiles

mus (stacked) matrix of location vectors

Sigmas (stacked) matrix of dispersion matrices

dfs vector of degrees of freedom

props vector of mixing proportions

Details

rmvt.mixt is based on the rmvt function from the mvtnorm library.

The formula for a d-variate t density with location vector µ, dispersion matrix Σ and

df degrees of freedom is

k

[
1 +

1
df

(x− µ)TΣ−1(x− µ)
]−(d+df)/2

where

k =
Γ((df + d)/2)

(dfπ)d/2Γ(df/2)|Σ1/2|
.

Value

Multivariate t mixture random vectors and density values.

See Also

rmvnorm.mixt, dmvnorm.mixt

Examples

mus <- rbind(c(-3/2,0), c(3/2,0))
Sigmas <- rbind(diag(c(1/16, 1)), rbind(c(1/16, 1/18), c(1/18, 1/16)))
props <- c(2/3, 1/3)
dfs <- c(7,3)
x <- rmvt.mixt(1000, mus, Sigmas, dfs, props)
dens <- dmvt.mixt(x, mus, Sigmas, dfs, props)
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plot.dade Density estimates and partition plot for discriminant analysis
for bivariate data

Description

Density estimate plot and partition for bivariate data for kernel, linear and quadratic

discriminant analysis

Usage

## S3 method for class 'dade':

plot(fhat, y, y.group, prior.prob=NULL, display="part", cont,

ncont=NULL, ...)

Arguments

fhat an object of class dade i.e. output from kda.kde or pda.pde

display include plot of partition classes

y matrix of test data points

y.group vector of group labels for test data points

prior.prob vector of prior probabilities

cont vector of percentages (of maximum height) for contour level curves

ncont number of contour level curves

... other graphics parameters

Details

If prior.prob is set to a particular value then this is used. The default is NULL which

means that the sample proportions are used.

If display="part" then a partition induced by the discriminant analysis is also plot-

ted. If this is not desired then set display="". Its colours are controlled by col (the

default is 2 to ν + 1, where ν is the number of groups).

Unlike plot.kde, the contour plots are automatically added to the plot. The line

types are set by lty (the default is 1 to ν). Also, cont and ncont control the number

of level curves (only one of these needs to be set).

The object fhat contains the training data and its group labels. If y and y.group

are missing then the training data points are plotted. Otherwise, the test data y are
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plotted. The plotting symbols are set by pch (the default is 1 to ν), one for each

group.

Value

Plot of density estimates (and partition) for discriminant analysis is sent to graphics

window.

References

Simonoff, J. S., (1996) Smoothing Methods in Statistics. Springer-Verlag. New York.

See Also

kda.kde, pda.pde, kda, pda

Examples

library(MASS)
data(iris)
iris.mat <- rbind(iris[,,1], iris[,,2], iris[,,3])
ir <- iris.mat[,c(1,2)]
ir.gr <- iris.mat[,5]
xlab <- "Sepal length (mm)"
ylab <- "Sepal width (mm)"
xlim <- c(4,8)
ylim <- c(2,4.5)

H <- Hkda(ir, ir.gr, bw="plugin", pre="scale")
fhat <- kda.kde(ir, ir.gr, H, gridsize=c(250,250))
lda.fhat <- pda.pde(ir, ir.gr, type="line")
qda.fhat <- pda.pde(ir, ir.gr, type="quad")

layout(rbind(c(1,2), c(3,4)))
plot(fhat, cont=0, xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim, pch=c(1,5,10))
plot(fhat, ncont=6, xlab=xlab, ylab=ylab, xlim=xlim, ylim=ylim,

col=c("transparent", "grey", "#8f8f8f"), drawlabels=FALSE)
plot(lda.fhat, ncont=6, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, disp="")
plot(qda.fhat, ncont=6, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab,

lty=c(2,5,3))
layout(1)

plot.kde Kernel density estimate plot for bivariate data

Description

Kernel density estimate plot for bivariate data.
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Usage

## S3 method for class 'kde':

plot(fhat, display="slice", ...)

Arguments

fhat an object of class kde i.e. output from kde function

display type of display

... other graphics parameters - see details below

Details

There are three types of plotting displays available, controlled by the display param-

eter.

If display="slice" then a slice/contour plot is generated using contour. The default

contours are at 25%, 50%, 75% or cont=c(25,50,75). The user can also set the

number of contour level curves by changing the value set to ncont. See examples

below.

If display="persp" then a perspective/wire-frame plot is generated. The default z-

axis limits zlim are determined by the range of the z values i.e. default from the usual

persp command.

If display="image" then an image plot is generated. The colours are the default from

the usual image command.

Value

Plot of kernel density estimate is sent to graphics window.

References

Bowman, A.W. & Azzalini, A. (1997) Applied Smoothing Techniques for Data Analysis.

Clarendon Press. Oxford.

Simonoff, J. S., (1996) Smoothing Methods in Statistics. Springer-Verlag. New York.

See Also

kde
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Examples

data(faithful)
Hpi <- Hpi(faithful)
fhat <- kde(faithful, Hpi)

layout(rbind(c(1,2), c(3,4)))
plot(fhat, display="slice", cont=seq(10,90, by=20), cex=0.3)
plot(fhat, display="slice", ncont=5, cex=0.3, drawlabels=FALSE)
plot(fhat, display="persp")
plot(fhat, display="image", col=rev(heat.colors(15)))
layout(1)

pre.sphere, pre.scale

Pre-sphering and pre-scaling

Description

Pre-sphered or pre-scaled version of data.

Usage

pre.sphere(x)

pre.scale(x)

Arguments

x matrix of data values

Details

For pre-scaling, the data values are pre-multiplied by S−1/2 and for pre-scaling, by

(SD)−1/2 where S is the sample variance and SD is diag (S2
1 , S

2
2) and S2

1 , S
2
2 are the

marginal sample variances.

If H∗ is the bandwidth matrix for the pre-transformed data and H is the bandwidth

matrix for the original data, then H = S1/2H∗S1/2 or H = S1/2
D H∗S1/2

D as appropriate.

Value

Pre-sphered or pre-scaled version of data. These pre-transformations are required

for implementing the plug-in Hpi selectors and the smoothed cross validation Hscv

selectors.
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References

Wand, M.P. & Jones, M.C. (1994) Multivariate plugin bandwidth selection. Computa-

tional Statistics 9, 97-116.

Duong, T. & Hazelton, M.L. (2003) Plug-in bandwidth matrices for bivariate kernel

density estimation. Journal of Nonparametric Statistics 15, 17-30.

Examples

x <- rmvnorm.mixt(1000, mus=c(0,0), Sigmas=rbind(c(1,0.2), c(0.2, 0.5)))
x.sp <- pre.sphere(x)
x.sc <- pre.scale(x)
var(x.sp)
var(x.sc)
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