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Abstract
Kernel smoothers are essential tools for data analysis due to their ability to convey 
complex statistical information with concise graphical visualisations. Their inclu-
sion in the base distribution and in the many user-contributed add-on packages of 
the R statistical analysis environment caters well to many practitioners. Though 
there remain some important gaps for specialised data, most notably for tidy and 
geospatial data. The proposed eks package fills in these gaps. In addition to kernel 
density estimation, this package also caters for more complex data analysis situa-
tions, such as density derivative estimation, density-based classification (supervised 
learning) and mean shift clustering (unsupervised learning). We illustrate with 
experimental data how to obtain and to interpret the statistical visualisations for 
these kernel smoothing methods.

Keywords Classification · Clustering · ggplot2 · GIS · Kernel density estimation · 
sf · Tidyverse

1 Introduction

Kernel smoothers form an essential suite of statistical techniques for data analysis 
in the 21st century due to their ability to convey complex statistical information in 
a concise and intuitive visual format. This ability arises from their shared charac-
teristic of transforming data samples into smoothed estimates. Kernel smoothers 
have provided insight in data analysis problems in many situations. A small recent 
selection of these includes: the identification of important biomedical functions, 
such as characterising different sub-cellular structures in single cells (Schauer et al. 
2010) or characterising a single cell population in mixed cell samples (Chacón et al. 
2011); the evaluation of predicted extreme temperatures to calibrate climate mod-
els (Béranger et al. 2019); the estimation of the home range of animal movements 
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(Baíllo and Chacón 2021); or the detection of traffic anomalies from traffic flows 
(Kalair and Connaughton 2021).

A major access point to kernel smoothers in the R statistical programming environ-
ment is the ks (‘kernel smoothing’) add-on package (Duong 2007), which implements 
density estimation, density derivative estimation, classification (unsupervised learning), 
clustering (unsupervised learning), and inferential methods. This package utilises the 
base R graphics engine to generate its statistical graphics. Whilst it remains the most 
comprehensive graphics engine in R, the ggplot2 graphics engine (Wickham 2016) 
has gained popularity, as part of the ‘tidyverse’, especially with data analysis practi-
tioners. Despite the dramatic rise in the number of analysis methods available in the 
tidyverse, nonetheless it comprises a limited range of natively implemented kernel 
smoothers. The first goal of the eks (‘extended kernel smoothing’) package (Duong 
2023) is to provide access to a comprehensive suite of kernel smoothers in the tidyverse.

There is an analogous lack of kernel smoothers for geospatial data analysis. Since 
the term ‘geospatial’ data analysis refers to many different yet overlapping concepts, 
we employ it in this paper to refer to data analysis which is compatible with ‘Geo-
graphical Information Systems’ (GIS). Within R, the sf package (Pebesma 2018) 
provides geospatial/GIS functionality via its robust implementation of the ‘simple 
features’ GIS standard data format (OGC 2010). The eks package relies on this sim-
ple features implementation, in order to facilitate visualisations in both ggplot2 
and base R graphical engines, and input/output to external GIS software (such as 
ArcGIS and QGIS). The second goal of the eks package is to provide access to a 
comprehensive suite of kernel smoothers for geospatial analysis.

Thus a wide range of kernel smoothers is now available for tidy and geospatial 
data, and for ggplot2 and base R graphical visualisations. The user is able to 
select and combine these components, with their differing strengths and applica-
bilities, in order to construct suitable data analysis workflows. To illustrate kernel 
smoothers, we employ the tidy data set air from the ks package, and the geospa-
tial data set grevilleasf from the eks package, as shown in Fig. 1.

A tidy data set is a data matrix where (i) each variable forms a column and (ii) 
each observation forms a row, and it is also known as a ‘long’ data set (Wickham 
2014). The first three records of the air data set are

These are the hourly mean air quality measurements from 01 January 2013 to 31 
December 2016 in the Châtelet underground train station, which is a major hub in 
the Paris transport network (RATP 2016). We focus on the concentrations of carbon 
dioxide CO2 ( g/m

3 ) (co2) and of particulate matter less than 10 μm in diameter PM10 
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(parts per million) (pm10), and the hourly interval (time). The concentrations of 
CO2 indicate the renewal rate of fresh air, and of PM10 the potential to affect adversely 
respiratory health. There are n = 30,239 complete (co2, pm10) measurements.

The geospatial data grevilleasf data set consists of 22,203 plants from 238 
different Grevillea species collected in Western Australia. The south-west corner of 
Western Australia is one of the 25 ‘biodiversity hotspots’ which are ‘areas featuring 
exceptional concentrations of endemic species and experiencing exceptional loss of 
habitat’ identified in Myers et al. (2000) to assist in formulating priorities in biodiver-
sity conservation policies. The geodetic coordinates (degrees) of the Grevillea locations 
are transformed into planar coordinates (metres) using the GDA2020/MGA zone 50 
(EPSG:7850) projection. They are encoded as a simple feature in the geometry col-
umn, which is a special data structure that cannot be treated like the usual floating point 
variables in data frames or tibbles, and require specialised methods implemented by the 
sf package. So we refer to grevilleasf solely as a geospatial data set, and omit 
any mention of its tidy status, to emphasise its distinct geospatial characteristics.

Fig. 1  Scatter plots of data sets. (Left) Tidy air quality measurements air (n = 30,239), in the Châtelet 
underground train station in Paris, France. (Right) Geospatial Grevillea locations grevilleasf (n = 
22,203), in the biodiversity hotspot of south-western Western Australia
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This paper focuses on the software implementation of the kernel smoothers, 
and is complementary to Chacón and Duong (2018) which focuses on the underly-
ing statistical framework. The eks package computes kernel smoothers for 1- and 
2-dimensional tidy data, and 2-dimensional geospatial data. In Sect. 2, we explore 
kernel density estimation, in Sect. 3 classification (supervised learning), in Sect. 4 
density gradient estimation, and in Sect.  5 clustering (unsupervised learning). We 
illustrate each case first for tidy data with ggplot2 graphics, and then for geospa-
tial data with ggplot2 and base R graphics. In Sect. 6, we briefly mention kernel 
smoothers in other data analysis settings, which are implemented in the eks pack-
age but have been omitted for brevity, and we end with some concluding remarks.

2  Density estimation

Density estimation is a fundamental statistical analysis tool, since it supplies much 
information about the data set at hand. Our data X1,… ,Xn is a random sample 
drawn from the common density function f. The goal of density estimation, as its 
name suggests, is to estimate this unknown density. Kernel density estimates are 
a popular choice among the many available smoothed density estimation meth-
ods, since they possess an intuitive construction. It is the most widely used kernel 
smoother, and can be considered to be a smoothed version of the histogram. For an 
arbitrary estimation point x , the kernel density estimate is

Throughout the eks package, the kernel function is the Gaussian density func-
tion K

H
(x) = (2𝜋)−1|H|−1∕2 exp

(
−

1

2
x
⊤
H

−1
x

)
 . Equation  (1) tells us that to com-

pute a kernel density estimate, we place a Gaussian function, with variance H , 
at each data point Xi , and then we sum these kernel functions. This way, the data 
sample X1,… ,Xn are transformed into a smooth surface f̂

H
 . Chacón and Duong 

(2018, Chap. 2) contains a more detailed overview of kernel density estimates.
The bandwidth matrix H in Eq.  (1) is the crucial tuning parameter. A band-

width matrix which is too small leads to an undersmoothed density estimate since 
it does not offer sufficient reduction in the complexity of the observed data. On the 
other hand, a bandwidth matrix which is too large leads to an oversmoothed den-
sity estimate that obscures important details in the observed data. Thus it is critical 
to find an optimal trade-off between this under- and oversmoothing. Many possible 
solutions for optimal smoothing are implemented in the ks package, and are thus 
available in the eks package, including the plug-in, unbiased cross validation and 
smoothed cross validation bandwidths. These selectors are implemented solely for 
the Gaussian kernel since it “allows for important mathematical and computational 
simplifications and avoids any possible problems with the non-existence of higher 
order derivatives of the kernel function when computing data-based bandwidth 
selectors” (Chacón and Duong 2018, p. 82).

(1)f̂
H
(x) = n−1

n∑

i=1

K
H
(x − Xi).
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2.1  Tidy density estimation

To illustrate density estimation for tidy data, we focus on a single hourly interval 
of the air quality measurements. Figure  2 compares the density estimates, for the 
n = 1285 measurements from 11:00 to 12:00, with an optimal bandwidth and a sub-
optimal one. The optimal bandwidth is computed from the eks package and the 
sub-optimal one from the ggalt package (Rudis et al. 2017). The former, known 
as the bivariate plug-in bandwidth matrix (Duong and Hazelton 2003), is the default 
optimal bandwidth in the eks package, and it is obtained from a call to ks::Hpi. 
This optimality is the result from theoretical and numerical comparisons in Chacón 
and Duong (2018, Sect.  2.3) and the references therein. For the air quality meas-
urements, the optimal ks::Hpi matrix is [342.1, 97.2; 97.2 365.2]. The presence 
of non-zero off-diagonal entries in the optimal matrix appropriately orients the ker-
nel functions, and the resulting density estimate is unimodal, as shown in the cen-
tre panel of Fig. 2. The default bandwidth in ggalt, which is widely used in the 
tidyverse, is obtained from the element-wise application of the univariate plug-in 
bandwidth KernSmooth::dpik. For the air quality measurements, this band-
width is [218.6, 0; 0, 124.9]. Since this sub-optimal matrix only applies smoothing 
in the coordinate axis directions, it yields an undersmoothed density estimate with 
spurious bimodal structure on the right panel.

In Fig. 2, the heights of the contour regions are calculated according to the proba-
bility contours method (Bowman and Foster 1993; Hyndman 1996). The pink region 
is the smallest region that contains 25% of the probability mass, the orange region 
plus the enclosed pink region is the smallest region that contains 50% of the prob-
ability mass, and the yellow region plus the enclosed orange and pink regions is the 
smallest region that contains 75% of the probability mass. Since these are relative 
heights, they facilitate the choice of the contour levels, since it involves selecting 
values from 0 to 100%, rather than from the range of the density values. These prob-
ability contours can also be considered as a multivariate extension of the univariate 
percentiles, e.g., the 50% contour region is a bivariate equivalent to the median. Due 
to their intuitive properties, these probability contours are employed throughout in 

Fig. 2  Filled contour plots of density estimates for air quality measurements 11:00–12:00 ( n = 1285 ) 
with quartile probability contour levels. (Left) Scatter plot. (Centre) Optimally smoothed. (Right) 
Undersmoothed
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eks, with the quartile contour levels (25, 50, 75%) being the default values. In addi-
tion to their intuitive interpretation, these probability contours are straightforward 
to compute: the kernel density estimate is evaluated at the n observed data values 
f̂
H
(X1),… , f̂

H
(Xn) , then we compute �� as the �-quantile of these evaluated values, 

and the � probability contour region is the level set of the density estimate at �� , i.e. 
{x ∶ f̂

H
(x) > 𝜏𝛼} (Hyndman 1996). These probability contours are also implemented 

in the ggdensity package (Otto and Kahle 2023), though with a similar sub-opti-
mal bandwidths as in ggalt.

The R code snippets included here are intended to give an overall idea of the 
syntax of the eks package, rather than a complete code to reproduce the figures. 
The latter is provided in the companion R script. The code snippet to compute the 
density estimate with the optimal bandwidth, in the centre panel in Fig. 2, is

The function tidy_kde is a wrapper function for ks::kde, which computes 
the tidy density estimate explicitly. This differs from existing layer functions, e.g., 
ggplot2::geom_density_2d and ggalt::geom_bkde2d, which compute 
the density estimate internally and do not return a user-level R object. The tidy den-
sity estimate from tidy_kde is:

This output is a tidy tibble with an added tidy_ks class, which allows for a 
ggplot.tidy_ks method to be defined for this object class. Otherwise, it can be 
treated as a tibble. The first two columns co2, pm10 (same names as the input data) 
are the coordinates of the vertices in the estimation grid, the third column estimate 
is the density estimate value at co2, pm10. The fourth column ks holds the out-
put from ks::kde. This is required for the computation of probability contours in the 
new layer function geom_contour_filled_ks to draw the filled contour plots for 
tidy_ks objects. The remaining columns indicate that the output is a density esti-
mate computed from ks::kde, and they are employed in ggplot.tidy_ks to 
create default aesthetic mapping and legend labels. This default aesthetic mapping is 
ggplot2::aes(x=co2, y=pm10, z=estimate, weight=ks). Whilst the 
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x, y, z aesthetics are as expected for a bivariate contour plot, the weight aesthetic is 
unorthodox, since it is not a weighting variable: it is a workaround in ggplot2 graph-
ics to mimic the dynamic display of probability contours in base R graphics.

For the air quality measurements from 11:00 to 12:00, the quartile contour levels 
for the optimally smoothed density estimate in the centre panel in Fig. 2 are 3.31e−5, 
2.42e−5, 1.22e−5, and for the undersmoothed density estimate in the right panel are 
3.51e−5, 1.22e−5, 2.53e−5. These probability contour heights are different for each 
different density estimate, even if the target contour probabilities remain the same at 
25, 50, 75%. On the other hand, it is sometimes useful to have a set of fixed contour 
heights for all density estimates for a direct comparison. A heuristic method consists 
of computing the probability contour heights for each density estimate, for a fixed 
set of probabilities, which are then aggregated. We compute the corresponding prob-
abilities for each density estimate for this aggregated set of contour heights, and we 
remove any contour levels whose estimated probability which are too close to each 
other. This procedure is implemented in the contour_breaks function, though 
some trial and error is still likely required to produce visually appealing contour 
plots for all density estimates (Chacón and Duong 2018, Sect. 2.2).

We revisit the density estimates for the air quality measurements from 11:00 
to 12:00, this time with the fixed contour heights (3.90e−6, 1.46e−5, 2.48e−5, 
3.25e−5, 4.15e−5) in Fig.  3. With these fixed contour heights, a direct compari-
son of different density estimates is possible. The optimally smoothed estimate on 
the right exceeds the two highest contour heights (4.15e−5 dark pink, 3.25e−5 dark 
orange) with a unimodal bump, whereas the density estimate on right exceeds them 
with a bimodal structure. Since the latter adds some spurious modal information, it 
is considered to be undersmoothed in comparison.

The code to produce two density estimates with a single set of contour heights in 
Fig. 3 is

2.2  Geospatial density estimation

To illustrate density estimation for geospatial data, we utilise single species subsets 
of the Grevillea locations. Figure 4 compares the density estimates for the n = 93 
locations of the G. yorkrakinensis species which result from an optimal plug-
in bandwidth [8.84e8, −8.33e8; −8.33e8, 1.36e9] and a sub-optimal bandwidth 
[5.43e8, 0; 0, 9.10e8]. The optimally smoothed density estimate in the centre panel 
in Fig. 4 displays a trimodal structure with obliquely oriented contours. The overs-
moothed density estimate in the right panel, whilst it also has trimodal structure, it 



 T. Duong 

has circular contours which do not follow closely the orientation of the observed 
data points, and so is considered to be oversmoothed.

To produce the centre panel in Fig.  4 for the G. yorkrakinensis locations, the 
commands are

The function st_kde is the geospatial equivalent of tidy_kde, and produces 
an object of class sf_ks, which is a list of 3 fields: tidy_ks, grid, and sf. The 
first field is a summary of the tidy density estimate from tidy_kde, the second 
are the rectangular polygons of the estimation grid, and the third are the 1% to 99% 
probability contour regions of the density estimate. We focus on the contour regions.

Fig. 3  Filled contour plots of density estimates for air quality measurements from 11:00 to 12:00 
( n = 1285 ) with fixed contour levels. (Left) Optimally smoothed. (Right) Undersmoothed
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This has 2 attributes: contlabel (label of probability contour region) and 
estimate (height of probability contour region). Unlike for tidy_kde where the 
probability contour regions are computed dynamically in the layer function geom_
contour_filled_ks, these 1–99% regions are converted to (multi)polygons 
prior to plotting since the dynamic conversion during plotting could be computa-
tionally heavy. Since we are unable replicate the automatic selection of the quar-
tile contours 25, 50, 75% by default, like in geom_contour_filled_ks, for the 
ggplot2::geom_sf layer function, we first apply st_get_contour to the 
input of ggplot2::geom_sf. The sf_ks class also has a ggplot.sf_ks 
method which computes the default map legend.

The following command produces the equivalent in base R graphics to the 
ggplot2 plot in the centre panel in Fig. 3.

This plot.sf_ks method for sf_ks objects method internally calls st_
get_contour to extract the required contour polygons for plotting, so it is more 
concise than ggplot2::geom_sf that requires an explicit user-level call to st_
get_contour. The base R and ggplot2 plots are essentially identical since they 
comply with the geospatial standard specifications for simple features.

Fig. 4  Filled contour plots of density estimates for G. yorkrakinensis ( n = 93 ) with quartile probability 
contour levels. (Left) Scatter plot. (Centre) Optimally smoothed. (Right) Oversmoothed
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2.3  Optimal bandwidth matrices

Since the bandwidth matrix is the crucial tuning parameter for kernel density esti-
mates, we explore further their statistical properties. These properties are the subject 
of a vast body of research literature, which we do not attempt to review here, and 
instead provide a simplified outline of how the optimal bandwidth matrix in eks is 
obtained.

We begin with a squared error discrepancy between a density estimate f̂
H

 and 
the target density f, i.e., M(H) = ∫ � [f̂

H
(x) − f (x)]2 �x . Since this expression 

involves the unknown target density f, it must be estimated for it to be of practi-
cal use. The plug-in bandwidth matrix in ks::Hpi computes the estimate 
M̂(H) = (4𝜋)−d∕2n−1|H|−1∕2 + 1

4
m̂

⊤

4
(vecH⊗ vecH) . We omit to describe this esti-

mate rigorously since it would require lengthy technical definitions: the interested 
reader is encouraged to consult Chacón and Duong (2018, Chap. 3) for details. We 
are content to state that the first term in M̂ is related to the variance of the density 
estimate, and the second term to the square of the bias of the density estimate. An 
optimal bandwidth matrix Ĥ is defined as

where the minimisation is carried out over the space of all symmetric positive defi-
nite matrices. When this minimisation is achieved, then there is an optimal trade-
off between the variance and the squared bias, or equivalently between over- and 
under-smoothing. When an optimal bandwidth matrix Ĥ is substituted into Eq. (1), 
the resulting kernel density estimate is the closest to the target density f as measured 
by the discrepancy M̂ . Different bandwidth matrices arise from the different ways 
of computing M̂ and/or from different ways of carrying out the minimisation. For 
example, the default bandwidth in ggalt treats the joint bivariate optimisation in 
Eq. (2) as two separate univariate optimisation problems. The density estimate func-
tions tidy_kde and st_kde compute Ĥ in Eq. (2) by calling the ks::Hpi func-
tion, and then substitute this Ĥ into Eq. (1), to compute an optimal tidy/geospatial 
density estimate, as shown in the centre panels in Figs. 2 and 3.

Additional bandwidth matrices in the ks package include the normal scale 
ks::Hns, unbiased cross validation ks::Hucv and smoothed cross validation 
ks::Hscv. The commands are:

For most data samples, the plug-in bandwidth ks::Hpi yields fast and robust 
kernel estimates, though there remain some cases where other bandwidths are more 
suitable. For a review of the performance of these bandwidths, see Chacón and 

(2)Ĥ = argmin
H

M̂(H)
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Duong (2018, Chap. 3) and the references therein. For brevity, we illustrate kernel 
estimates only with the plug-in optimal bandwidths in the sequel.

3  Density‑based classification (supervised learning)

The goal of classification is to assign future data to one of the known classes 
in the current data. So this is a supervised learning problem. The data are 
(X1, Y1),… , (Xn, Yn) , where the Xi are the observed attributes, and the Yi is the 
known class label from m classes. These data are a random sample from the mixture 
density �1f1 +⋯ + �mfm , where �j is the prior probability and fj is the marginal den-
sity function for class j, for j = 1,… ,m (Chacón and Duong 2018, Sect. 7.2).

The Bayes classifier assigns a candidate point x to the class c with the highest 
density value at x , i.e., c(x) = argmaxj=1,…,m �jfj(x) . This Bayes classifier has few 
assumptions on the form of the target densities fj and achieves the smallest misclas-
sification rate (Bayes error) among all classifiers given the attributes (Devroye et al. 
1996, p. 2). The misclassification error is the probability that we do not classify a 
candidate point in class j given that it is drawn from class j, ℙ {c(X) ≠ j|X ∼ fj} . The 
density-based classifier replaces the prior probability �j with the observed sample 
class proportion �̂�j , and the marginal density fj with the marginal density estimate f̂j . 
Each marginal density estimate is computed with its own optimal bandwidth matrix. 
The estimated class label for x from the kernel density-based classifier is thus

This kernel classifier is more adaptable than the usual linear and quadratic classi-
fiers. The linear classifier uses Gaussian density fits with a common variance matrix 
for all classes, and the quadratic classifier Gaussian density fits with a different vari-
ance matrix for each class.

3.1  Tidy classification

Our data sample comprises the air quality measurements for three hourly intervals 
at six hours apart throughout the day, i.e. 07:00–08:00 (pink circles, n1 = 1282 ), 
13:00–14:00 (green triangles, n2 = 1280 ), and 19:00–20:00 (blue squares, 
n3 = 1292 ), as shown in the scatter plot in the left panel of Fig. 5. In the centre panel 
are the quartile probability contour plots of marginal density estimates �̂�1 f̂1 (pink 
solid lines), �̂�2 f̂2 (green dotted lines), and �̂�3 f̂3 (blue dashed lines), where f̂1 is the 
density estimate for 07:00–08:00, f̂2 for 13:00–14:00, and f̂3 for 19:00–20:00. As 
the marginal density contours have considerable overlap in the central regions, it is 
difficult to decide visually which marginal density value is higher. This is resolved 
in the plot of estimated class labels from the density-based classifier on the right of 
Fig. 5. The regions where the 07:00–08:00 measurements are more likely are col-
oured in pink, the 13:00–14:00 measurements are more likely are in green, and the 
19:00–20:00 measurements are more likely are in blue. The general trend is, as the 

ĉ(x) = argmax
j=1,…,m

�̂�j f̂j(x).
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day progresses, both levels of CO2 and PM10 increase, with the increase of PM10 
being more sustained. The boundaries of these class label regions are complex and 
would not be well-estimated by the linear and quadratic classifiers. It appears that 
the upper right corner of the kernel classifier gives noisy decision boundaries but 
since this region has no observed data, it is has little effect on its accuracy. The mis-
classification rate of the kernel classifier is 0.38, in comparison to 0.44 for a linear 
classifier (MASS::lda) and 0.43 for a quadratic classifier (MASS::qda).

The command to compute a tidy kernel classifier is tidy_kda. It requires 
a grouped tidy tibble as its input (air_gr), grouped by the class factor variable 
(time). To produce the marginal densities plot for the density-based classifier in the 
centre panel in Fig. 5.

The layer function geom_contour_ks draws the contour lines for tidy_ks 
objects. In addition to the columns already present in the density estimate, the extra 
columns in the output of a density-based classifier relate to the classes: prior_
prob (class sample proportion), label (estimated class label), time (same as 
input class label). The structure of a density-based classifier is similar to that for a 
density estimate grouped by a class variable.

3.2  Geospatial classification

Our geospatial data sample comprises the combined G. hakeoides (pink circles, 
n1 = 207 ) and G. paradoxa (green triangles, n2 = 358 ) locations, as shown in the 

Fig. 5  Density-based classifier for air quality measurements at different hourly intervals. (Left) Scatter 
plots for 07:00–08:00 ( n

1
= 1282 ), 13:00–14:00 ( n

2
= 1280 ), 19:00–20:00 ( n

3
= 1292 ). (Centre) Quar-

tile probability contours of marginal density estimates. (Right) Class label estimates
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scatter plot in the left panel of Fig. 6. In the centre panel are the quartile probability 
contour plots of marginal density estimates �̂�1 f̂1 (pink solid lines) and �̂�2 f̂2 (green 
dotted lines), where f̂1 is the density estimate for G. hakeoides, and f̂2 for G. par-
adoxa. The regions where G. hakeoides is more likely are coloured in pink, and 
where G. paradoxa is more likely are in green. For display purposes, the class labels 
have been truncated to the convex hull of the marginal density estimates so that they 
remain over the land area (in grey). We observe again that boundaries of these class 
label regions are complex and would not be well-estimated by the linear and quad-
ratic classifiers.

A geospatial density-based classifier requires the input (grevilleasf_gr) to 
be grouped by the class factor variable (species):

The estimated class labels are stored in the sf_ks object in the grid field as a 
collection of rectangular polygons. To plot these class labels, as in the right panel in 
Fig. 6, we call ggplot2::geom_sf on the grid field for a ggplot2 plot, and 
plot(x, which_geometry=="grid") for a base R plot.

The question of optimal bandwidths for a density-based classifier is more compli-
cated than that for a density estimate. We opt for a simple and robust implementation 
in the eks package, where tidy_kda and st_kda call ks::Hpi for each class 

Fig. 6  Density-based classifier for Grevillea locations. (Left) Scatter plots for G. hakeoides ( n
1
= 207 ), 

G. paradoxa ( n
2
= 358 ). (Centre) Quartile probability contours of marginal density estimates. (Right) 

Class label estimates



 T. Duong 

data sub-sample. These class-wise optimal bandwidths are known to asymptotically 
minimise the misclassification error. Whilst there is an intuitive appeal in selecting 
bandwidths to exactly minimise the misclassification error, it is not clear how much 
is gained in practise with this more complicated approach over the simpler band-
widths. Moreover, there are currently no efficient algorithms to compute these more 
complicated bandwidths. See Chacón and Duong (2018, Sect. 7.2) for a discussion.

4  Density derivative estimation

Crucial information about the structure of a data set is not always revealed by exam-
ining solely the density values, and can only be discerned via the density deriva-
tives. For example, the local minima/maxima of the data density are characterised 
as the locations where the first derivative is identically zero. A recent example of the 
utility of density derivative estimates in data analysis is the segmentation of digital 
images, which utilised the first density derivative of pixel colour-locations to guide 
the search for similar image segments more efficiently than using only the density of 
the pixel colour-locations (Beck et al. 2016).

With the same data as for the density estimation case, i.e., X1,… ,Xn is a random 
sample drawn from the common density function f, our goal is to estimate the first 
(gradient) derivative of the unknown density f. For 2-dimensional data, the gradient 
of a density function f is comprised of two partial derivatives �f = [�f∕�x1, �f∕�x2] . 
The kernel estimate of the density gradient is given by

where the gradient kernel function is �K
H
(x) = −(2𝜋)−1|H|−1∕2H−1

x exp
(
−

1

2
x
⊤
H

−1
x

).

4.1  Tidy density derivative estimation

Since there are two components of the density gradient, it can be visualised using 
two separate plots, one for each partial derivative. A more concise alternative is 
a quiver plot, in which arrows, whose length and direction are determined by the 
gradient, are drawn at each point in the estimation grid. The right panel of Fig. 7 
is the quiver plot for the density gradient estimate for the air quality measure-
ments from 13:00 to 14:00, superposed on the density estimate. The arrows for 
the density gradient point towards the peaks of the modal regions. These arrows 
are longer where the density gradient is steeper, and they are shorter in the den-
sity tails where the slope is flatter. These density gradients indicate the rate of 
change in the data density, which is not easy to ascertain from the density levels 
themselves in the underlying density contour plot.

(3)�f̂
H
(x) = n−1

n∑

i=1

�K
H
(x − Xi)
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The command for a tidy density gradient estimate is tidy_kdde(x, 
deriv_order=1). The function tidy_kquiver converts the output 
from tidy_kdde into a format suitable for the quiver plot layer function 
ggquiver::geom_quiver (O’Hara-Wild 2019). The code to produce a 
quiver plot superposed on a density estimate is

The output from tidy_kdde is a tidy tibble which is grouped by deriv_
group. The columns present in a density estimate are also present in a density 
derivative estimate, along with some additional columns relating to the derivative: 
deriv_order (derivative order, 1 for the gradient), deriv_ind (partial deriv-
ative enumeration, from 1 to 2), deriv_group (partial derivative indices (1,0), 
(0,1) which correspond to �∕�x1, �∕�x2 respectively).

4.2  Geospatial density derivative estimation

For geospatial data, the left panel in Fig. 7 is the quiver plot for the density gradient 
estimate for G. yorkrakinensis, superposed on the density estimate. Whilst with st_
kquiver we can compute a geospatial output, ggplot2::geom_sf is not able 
plot arrows, and it is not possible to overlay a ggquiver::geom_quiver layer 

Fig. 7  Quiver plots of density gradient estimate, superposed over density estimates. (Left) Air quality 
measurements for 13:00–14:00 ( n = 1280 ). (Right) G. yorkrakinensis locations ( n = 93)
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over a geom_sf layer. The current work-around is to overlay a ggplot2::geom_
segment layer over a geom_sf layer, with some trial and error required in 
grid::arrow to produce suitable arrows.

On the other hand, for a base R plot, the display of geospatial and tidy 
data are freely interchangeable, so we can overlay the quiver plot plot(x, 
display="quiver") for a kernel density gradient estimate from the ks 
package.

For optimal bandwidth selection for kernel density gradient estimates, it is crucial 
to note that the optimal bandwidth matrix for �f̂

H
 is not the same as that for f̂

H
 . For a 

density estimate the optimality criterion is M(H) = ∫ � [f̂
H
(x) − f (x)]2 �x , whereas 

the criterion for a density gradient estimate is M1(H) = ∫ � ‖�f̂
H
(x) − �f (x)‖2 �x . 

Since M ≠ M1 , their minimisers are also not equal in general. The default optimal 
bandwidth for the density gradient estimate in the eks package is the plug-in band-
width (Chacón and Duong 2010) obtained from a call to ks::Hpi(x, deriv.
order=1). For the air quality measurements for 13:00 to 14:00, this bandwidth 
matrix is [441.0, 59.5; 59.5, 305.0]. In comparison, the optimal bandwidth matrix 
for the density estimate is [495.0, 88.0; 88.0, 245.0]. For the G. yorkrakinensis data, 
the optimal plug-in bandwidth matrix for the density gradient estimate is [4.39e8, 
−4.36e8; −4.36e8, 7.73e8], whereas for the density estimate, it is [8.84e8, −8.33e8; 
−8.33e8, 1.36e9].

5  Density‑based clustering (unsupervised learning)

The goal of clustering is to discover homogeneous groups within a data set in a 
trade-off between similarity/dissimilarity: members of the same cluster are similar 
to each other while members of different clusters are dissimilar to each other. If the 
q unknown population clusters are {C1,… ,Cq} , then the cluster labelling function 
is c(x) = j whenever a candidate point x belongs to cluster Cj . Whilst we are able to 
estimate the cluster labelling function for all candidate points, for the vast majority 
of data analysis cases, it is sufficient to compute ĉ(X1),… , ĉ(Xn) for the data sample 
X1,… ,Xn . Since the cluster labels are unknown, then this is an unsupervised learn-
ing problem.
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Many clustering algorithms have been proposed in the literature. Our chosen 
approach is density-based clustering, where a cluster is a data-rich region (high den-
sity values) which is separated from another data-rich region by a data-poor region 
(low density values). Thus we associate each data point to its ‘most representative’ 
data-rich region. In the eks package, this association is carried out with a mean 
shift algorithm (Fukunaga and Hostetler 1975). For a data point Xi , we initialise a 
sequence with Xi,0 = Xi , then we iterate the recurrence equation

where f̂
H

 is a density estimate and �f̂
H

 is a density gradient estimate. This recur-
rence equation is closely related to the well-known gradient ascent algorithm, with 
the improvement that accelerates the convergence of the recurrence iterations in 
regions of low data density. A more computationally stable form of the mean shift 
recurrence equation, since it avoids the explicit computation of the density estimate 
f̂
H

 and density derivative estimate �f̂
H

 , is

where g(x) = x exp(−
1

2
x) and �

H
(x) =

∑n

�=1
X

�
g((x − X

�
)⊤H−1(x − X

�
))

∑n

�=1
g((x − X

�
)⊤H−1(x − X

�
))

− x . This 

�
H

 is known as the mean shift, since it is the difference between the current iterate 
and a weighted mean of all data points. For our stopping rule, we iterate the recur-
rence in Eq. (4) until either we reach a maximum number of iterations (400) or that 
the distance between subsequent iterations is less than 0.001 times the minimal mar-
ginal IQR (interquartile range) of the input data. This heuristic stopping rule gives 
sensible results in most cases.

The result is a sequence of points {Xi,0,Xi,1,…} which traces out a path, along 
the steepest ascent of the density gradient, from the data point Xi to the mode of 
the associated data-rich region. The data-rich regions are the ‘basins of attraction’ 
of the density gradient ascent. If the data points are associated with the same mode, 
then they are considered to be members of the same cluster. Thus the number of 
clusters is equal to the number of these basins of attraction. For more details on 
mean shift and other forms of density-based clustering, see Chacón and Duong 
(2018,  Sect. 6.2).

5.1  Tidy clustering

The result of the mean shift clustering on the n = 1280 air quality measurements 
from 13:00 to 14:00 into 5 clusters is displayed on the left panel in Fig. 8. Observe 
that we do not need to specify the number of clusters in advance, and the clusters can 
be of any arbitrary shape. These represent two important advantages over k-means 
clustering, which requires an a priori number of clusters, and whose cluster shapes 
are more restricted than those in mean shift clustering. Cluster #4 (blue crosses) 
and #5 (magenta boxed crosses) are the most separate from the other clusters. The 

Xi,k+1 = Xi,k +H
−1
�f̂

H
(Xk)

/
f̂
H
(Xk),

(4)Xi,k+1 = Xi,k + �
H
(Xi,k) =

∑n

�=1
X

�
g
�
(Xi,k − X

�
)⊤H−1(Xi,k − X

�
)
�

∑n

�=1
g
�
(Xi,k − X

�
)⊤H−1(Xi,k − X

�
)
�
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points at the edges of cluster #3 (green squares), cluster #1 (red circles) and cluster 
#2 (khaki triangles) are close to together, and k-means clustering tends to assign 
them to the same cluster, whereas the directionality of the mean shift assigns them 
to different clusters. Since the mean shift relies on the density gradient ascent paths, 
we overlay the arrows of the quiver plot of the density gradient on the convex hulls 
of the mean shift clusters on the right of Fig. 8. We observe that the gradient ascent 
arrows within each cluster are oriented towards the modes.

The command for mean shift clustering for tidy data is tidy_kms. The output is 
similar to that for a single density estimate, except that the data points are returned 
rather than the estimation grid points, and that estimate indicates the estimated 
cluster label rather than the density estimate value.

Since the direction along which the data points are shifted is directly related to 
the density gradient, the default bandwidth for mean shift clustering in tidy_kms 
is the plug-in bandwidth computed by ks::Hpi(x, deriv.order=1). For the 
air quality measurements for 13:00 to 14:00, this bandwidth matrix is [441.0, 59.5; 
59.5, 305.0]. The bandwidth choice is made with the goal of optimal identification 
of the density gradient ascent paths. It is also supported by the results that the opti-
mal bandwidth for estimating the mode of a density is closely related to the optimal 
bandwidth for density gradient estimation (Chacón and Duong 2018, p. 138).

Fig. 8  Mean shift clusters for the air quality measurements 13:00–14:00 ( n = 1280 ). (Left) Cluster mem-
bers. (Right) Cluster convex hulls, superposed over the quiver plot of its density gradient estimate
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5.2  Geospatial clustering

The result of the mean shift clustering on the n = 93 G. yorkrakinensis locations into 
4 clusters is displayed on the left panel in Fig. 9. Cluster #4 (magenta crosses) is the 
most northerly and most separate from the other clusters. Cluster #2 (green trian-
gles) forms the most southerly cluster and is also well-separated. The points on the 
right edge of cluster #1 (red circles) are close to those on the left edge of cluster #3 
(cyan squares), though the directionality of the mean shift, as indicated by the black 
arrows of the density gradient, assigns them to different clusters.

The command for mean shift clustering for geospatial data is st_kms. To pro-
duce the mean shift clusters, with at least 3 members in each cluster, the code snip-
pet is:

The default bandwidth for mean shift clustering in st_kms is the plug-in band-
width computed by ks::Hpi(x, deriv.order=1). For the G. yorkrakinensis 
locations, this is [4.39e8, −4.36e8; −4.36e8, 7.73e8].

Fig. 9  Mean shift clusters for G. yorkrakinensis ( n = 93 ). (Left) Cluster members. (Right) Cluster con-
vex hulls, superposed over the quiver plot of its density gradient estimate
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6  Software

6.1  Other data analysis settings

All the functionality in the ks package that involve 1- and 2-dimensional kernel 
smoothers are implemented for tidy data in the eks package. In addition to tidy_
kde, tidy_kda, tidy_kdde, and tidy_kms in Sects.  2–5, these functions 
include 

tidy_kde_boundary  Boundary density estimate where the kernel function 
K is modified explicitly in the boundary region

tidy_kde_truncate  Truncated density estimate where the standard den-
sity estimate f̂  is truncated and rescaled to give unit 
integral over the boundary region

tidy_kde_sp  Sample point density estimate where the bandwidth 
H(⋅) varies with the data point Xi

tidy_kde_balloon  Balloon density estimate where the bandwidth H(⋅) 
varies with the estimation point x

tidy_kdcde  Deconvolved density estimate for data Xi observed 
with error

tidy_kcde  Cumulative distribution estimate F̂

tidy_kcopula  Copula estimate with uniformly distributed marginal 
distributions

tidy_kroc  ROC (receiver operating characteristic) curve of the 
2-sample comparison of the marginal distribution 
estimates F̂1, F̂2

tidy_kdr  Density ridge estimate which is a generalisation 
of principal components to lower dimensional 
manifolds

tidy_kde_local_test  Significance testing for the 2-sample comparison of 
the difference of the density estimates f̂1 − f̂2

tidy_kfs  Significance testing for modal regions where the sec-
ond derivative (Hessian matrix) of the density esti-
mate f̂  is positive definitive.
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 All of the above functions (except tidy_kcopula) are implemented for 2-dimen-
sional geospatial data as st_k*. All of these utilise the appropriate default band-
width selector from the ks package. For brevity, we do not illustrate them here: 
their usage is demonstrated in their help pages contained in the eks package, and 
the details of the statistical framework in these data analysis settings are provided in 
Chacón and Duong (2018).

6.2  Export to external GIS

The ability to export the geospatial kernel estimates to standard vectorial geospa-
tial data formats extends the functionality of the eks package to GIS software. The 
commands to export to the geopackage format are:

The grevillea.gpkg geopackage consists of four layers: yorkr for the point 
geometries of the G. yorkrakinensis locations, yorkr_cont for the multi-polygons 
of the quartile contour regions of the density estimate, and yorkr_quiver for the 
linestrings of the density gradient flows.

This grevillea.gpkg geopackage can be subsequently employed in QGIS 
(QGIS.org 2021), which is an industry standard software for GIS practitioners since 
it offers features that are not available in R. For example, it has an interactive point-
and-click interface, and it incorporates fast rendering of the OpenStreetMap base 
maps. A screenshot from a QGIS analysis for a quiver plot overlaid on a density 
estimate is given in the left panel of Fig. 10. Recall that quiver plots can be difficult 
to produce with geospatial data in ggplot2 graphics, since the arrows require trial 
and error to display suitably with ggplot2::geom_segment. In contrast, quiver 
plots are straightforward in QGIS since rescaleable arrows are a native feature.

In addition, QGIS efficiently handles raster geospatial data. Whilst the grid 
field of a kernel estimate consists of the rectangular polygons for each pixel of the 
estimation grid, it can be converted to a raster via the stars package. The heat 
map of the converted raster is displayed in QGIS on the right of Fig. 10.
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7  Conclusion

We have introduced a new R package eks which serves as a bridge from the com-
prehensive suite of kernel smoothers in the ks package to the tidyverse and geo-
spatial analysis. A wide range of kernel smoothing methods are available, which 
(i) improve on the existing kernel density estimates, and (ii) widen the accessibility 
to more complex kernel-based data analyses, such as density gradient estimation, 
density-based classification (supervised learning) and mean shift clustering (unsu-
pervised learning). The eks package provides practitioners with additional tools to 
create compelling statistical visualisations from kernel smoothers, whether they are 
using tidy or geospatial data, or whether they are using base R or tidyverse graphics.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s00180- 024- 01543-9).

References

Baíllo A, Chacón JE (2021) Chapter 1—Statistical outline of animal home ranges: an application of set 
estimation. In: Rao AS, Rao C (eds) Data science: theory and applications. Elsevier, Amsterdam, pp 
3–37

Beck G, Duong T, Azzag H, Lebbah M (2016) Distributed mean shift clustering with approximate near-
est neighbours. In: Proceedings of the 2016 international conference on neural networks (IJCNN), 
pp 3110–3115

Béranger B, Duong T, Perkins-Kirkpatrick SE, Sisson SA (2019) Tail density estimation for exploratory 
data analysis using kernel methods. J Nonparametric Stat 31:144–174

Bowman AW, Foster P (1993) Density based exploration of bivariate data. Stat Comput 3:171–177
Chacón JE, Duong T (2010) Multivariate plug-in bandwidth selection with unconstrained bandwidth 

matrices. Test 19:375–398
Chacón JE, Duong T (2018) Multivariate kernel smoothing and its applications. Chapman and Hall/CRC, 

Boca Raton
Chacón JE, Duong T, Wand MP (2011) Asymptotics for general multivariate kernel density derivative 

estimators. Stat Sin 21:807–840
Devroye L, Györfi L, Lugosi G (1996) A probabilistic theory of pattern recognition. Springer, Berlin

Fig. 10  Screenshots of QGIS analysis for G. yorkrakinensis ( n = 93 ). (Left) Contour plot of vectorial 
density estimate and quiver plot of vectorial density gradient estimate. (Right) Heat map of raster density 
estimate

https://doi.org/10.1007/s00180-024-01543-9
https://doi.org/10.1007/s00180-024-01543-9


Statistical visualisation of tidy and geospatial data in R…

Duong T (2007) ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. 
J Stat Softw 21(7):1–16

Duong T (2023) eks: tidy and geospatial kernel smoothing. R package version 1.0.3
Duong T, Hazelton ML (2003) Plug-in bandwidth matrices for bivariate kernel density estimation. J Non-

parametric Stat 15:17–30
Fukunaga K, Hostetler L (1975) The estimation of the gradient of a density function, with applications in 

pattern recognition. IEEE Trans Inf Theory 21:32–40
Hyndman RJ (1996) Computing and graphing highest density regions. Am Stat 50:120–126
Kalair K, Connaughton C (2021) Anomaly detection and classification in traffic flow data from fluctua-

tions in the flow-density relationship. Transp Res Part C Emerg Technol 127:103178
Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for 

conservation priorities. Nature 403:853–858
OGC (2010) OpenGIS implementation standard for geographic information—simple feature access—

part 1: common architecture. Version 1.2.1
O’Hara-Wild M (2019) ggquiver: quiver plots for ‘ggplot2’. R package version 0.2.0
Otto J, Kahle D (2023) ggdensity: interpretable bivariate density visualization with ‘ggplot2’. R package 

version 1.0.0
Pebesma E (2018) Simple features for R: standardized support for spatial vector data. R J 10:439–446
QGIS.org (2021) QGIS geographic information system. QGIS Association
RATP (2016) Qualité de l’air mesurée dans la station Châtelet. Régie autonome des transports parisiens, 

Département Développement, Innovation et Territoires. https:// data. ilede france. fr/ explo re/ datas et/ 
quali te- de- lair- mesur ee- dans- la- stati on- chate let. Accessed 27 Sept 2017

Rudis B, Bolker B, Schulz J (2017) ggalt: extra coordinate systems, ‘geoms’, statistical transformations, 
scales and fonts for ‘ggplot2’. R package version 0.4.0

Schauer K, Duong T, Bleakley K, Bardin S, Bornens M, Goud B (2010) Probabilistic density maps to 
study global endomembrane organization. Nat Methods 7:560–568

Wickham H (2014) Tidy data. J Stat Softw 59(10):1–23
Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

https://data.iledefrance.fr/explore/dataset/qualite-de-lair-mesuree-dans-la-station-chatelet
https://data.iledefrance.fr/explore/dataset/qualite-de-lair-mesuree-dans-la-station-chatelet

	Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
	Abstract
	1 Introduction
	2 Density estimation
	2.1 Tidy density estimation
	2.2 Geospatial density estimation
	2.3 Optimal bandwidth matrices

	3 Density-based classification (supervised learning)
	3.1 Tidy classification
	3.2 Geospatial classification

	4 Density derivative estimation
	4.1 Tidy density derivative estimation
	4.2 Geospatial density derivative estimation

	5 Density-based clustering (unsupervised learning)
	5.1 Tidy clustering
	5.2 Geospatial clustering

	6 Software
	6.1 Other data analysis settings
	6.2 Export to external GIS

	7 Conclusion
	References


