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A primary method for studying cellular function is to examine cell
morphology after a given manipulation. Fluorescent markers at-
tached to proteins/intracellular structures of interest in conjunction
with 3D fluorescent microscopy are frequently exploited for func-
tional analysis. Despite the central role ofmorphology comparisons
in cell biological approaches, few statistical tools are available that
allow biological scientists without a high level of statistical training
to quantify the similarity or difference of fluorescent images
containing multifactorial information. We transform intracellular
structures into kernels and develop a multivariate two-sample test
that is nonparametric and asymptotically normal to directly and
quantitatively compare cellular morphologies. The asymptotic nor-
mality bypasses the computationally intensive calculations used by
the usual resampling techniques to compute the P-value. Because
all parameters required for the statistical test are estimated directly
from the data, it does not require any subjective decisions. Thus,
we provide a black-box method for unbiased, automated compar-
ison of cell morphology. We validate the performance of our test
statistic for finite synthetic samples and experimental data. Em-
ploying our test for the comparison of the morphology of intracel-
lular multivesicular bodies, we detect changes in their distribution
after disruption of the cellular microtubule cytoskeleton with high
statistical significance in fixed samples and live cell analysis. These
results demonstrate that density-based comparison of multivariate
image information is a powerful tool for automated detection of
cell morphology changes. Moreover, the underlying mathematics
of our test statistic is a general technique, which can be applied
in situations where two data samples are compared.

hypothesis test ∣ integrated density functional ∣ optimal bandwidth
selection ∣ quantitative cell comparison

Fluorescent markers attached to proteins of interest in conjunc-
tion with modern fluorescent microscopy technologies are a

useful proxy for studying subcellular compartments and their
behavior after a given manipulation. Treatment with chemical
compounds or specific gene silencing by RNA interference are
commonly used at the scale of individual experiments to high-
throughput studies. Visual inspection by expert biologists has
been performed for several decades, ranging from early studies
by microscopists like Ramon y Cajal to contemporary large scale,
high-throughput screens (1–4). Although human observation may
be very accurate, the three major drawbacks are that (i) it lacks
quantitative measures, (ii) it may be biased, and (iii) it is time
consuming.

The structural features of cells and the topological relation-
ships between the numerous intracellular compartments give rise
to multivariate data whose unbiased, automatic comparison is a
major challenge. Importantly, alterations in cellular morphology
also occur in many diseases, including cancer, requiring quanti-
tative tools for their detection. Given that the majority of func-
tional cell biology is based on image comparison, few tools are
available that allow an unbiased, automatic comparison of the
multivariate data encoded in fluorescent images. The cytometric
tools developed so far are based on the extraction of a variety of
numerical features from images in combination with classification

strategies (5–9). Features represent any measured property de-
rived from the image, such as total/mean/standard deviation of
fluorescence intensity, texture, Zernike shape descriptions, etc.
(5, 10). Although feature-based approaches have proved to be
very powerful in detection of morphological changes (11–14),
they may suffer from lack of biologically meaningful, human
interpretable measurements due to the acquisition of abstract nu-
merical features and high-dimensional feature vector analysis.
Furthermore, they require careful choice and calibration for each
comparison (15). Current approaches also suffer from reduction
of information as multidimensional information is transformed
to one-dimensional metrics such as distances (16). There are few
statistical approaches that directly assess intracellular organization,
which makes automated image analysis of intracellular topology
challenging. Thus, spatial comparisons could complement feature-
based techniques for analyzing cell morphology alterations.

Recently, we showed that global spatial organization of de-
fined subcellular structures (e.g., organelles, membrane domains)
can be quantified by probabilistic density maps (17). We grew
cells on adhesive micropatterns that enforce cells to take a certain
shape, mimicking tissues’ microenvironment (18). Image stacks
of fluorescently marked proteins from several tens of cells were
transformed into a cloud of coordinate points by segmentation
analysis and were aligned using characteristic landmarks of
micropatterns. To rigorously measure the topology of the fluor-
escently labeled subcellular structures, we centered Gaussian
functions (kernels) with mean zero and an optimized variance at
each of the data points and summed, revealing the underlying
density throughout the cell. This analysis demonstrated that den-
sity estimation is a reliable statistical technique for the analysis
of the morphology of subcellular structures whose point coordi-
nates can be resolved, providing the basics for a comprehensive
framework for statistical analysis. By transforming intracellular
structures into three-dimensional kernels, alterations in cellular
global organization, and thus cell morphology, can be translated
into differences in density maps that are tractable by mathema-
tical tools.

The problem of comparing two data samples has attracted
much research to investigate its theoretical and practical aspects.
Historically, the first methods involved small computational bur-
dens. The well-known t-test developed in the Guinness brewery
fits normal distributions with different means but with equal
variances to each data sample, thus reducing the original problem
to a simpler comparison for a difference in the means. However,
this test is limited by the prespecification of the parametric form.
Amongst the most widely known nonparametric tests for one-
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dimensional continuous data are the Mann-Whitney, Kolmogor-
ov-Smirnov, and Wald-Wolfowitz tests (19). The need for analo-
gous tests for multivariate data has been addressed (20–22).
However, these multivariate approaches have not met with the
same wide acceptance as their univariate ancestors, because the
former have not consistently yielded intuitive inferences when ap-
plied to experimental data. Given that the t-test is a density-based
comparison, replacing parametric density estimates with their
nonparametric counterparts should lead to a more flexible testing
procedure. Kernel smoothing is a widely used computational
technique for density estimation due to its intuitive construction
and interpretation (23). Thus, it is an ideal basis for nonpara-
metric density-based testing. Kernel-based tests have been devel-
oped with other discrepancy measures (24–27), but all rely on
computationally intensive resampling methods to compute the
critical quantiles of the null distribution. Although resampling
methods provide a general framework for consistent tests, a sec-
ond major trade-off is that they require sufficient familiarity, as
resampling requires calibration for each data analysis situation at
hand. These constraints prevent the wide adoption of bootstrap
kernel density-based testing outside the computational statistical
community. In particular, these tests are not easily available to
biologists.

Here, we develop a test statistic that is asymptotically normal
under the null hypothesis, allowing density-based, “black-box”
comparisons of multivariate data. We use simulated and experi-
mental data analysis to verify its performance for finite samples.
Given that 3D organizations of cells can be expressed by prob-
abilistic density maps, this test allows us to assess the statistical
significance of the similarity or difference between two cellular
topologies. Analyzing the data from fluorescent images of intracel-
lular organelles, this test allows us to compare cellular morphology
under different conditions in an automated and unbiased manner.

Results
Construction of the Test Statistic. We have used the usual squared
discrepancy measure in order to construct a nonparametric and
multivariate test statistic T̂ that is asymptotically normal under
the null hypothesis. (Algorithmic details are deferred to theMeth-
ods section).

Let X1; X2;…Xn1 and Y 1; Y 2;…Yn2 be d-variate random
samples from their respective common densities f 1 and f 2. Con-
cretely, X1; X2;…Xn1 are the spatial coordinates of subcellular
structures extracted from a first group of images, and likewise for
Y 1, Y 1; Y 2;…Yn2 from a second group of images. So f 1 repre-
sents the steady-state spatial probability density function of the
subcellular structures in the first images, and likewise for f 2. This
is the same statistical framework used in Schauer et al. (17) to
construct density maps from a single set of images. The kernel
density estimates of f 1 and f 2 are

f̂ 1ðx;H1Þ ¼
1

n1 ∑
n1

i¼1

KH1
ðx − X iÞ;

f̂ 2ðx;H2Þ ¼
1

n2 ∑
n2

j¼1

KH2
ðx − Y jÞ

[1]

where K is the kernel function with KHl
ðxÞ ¼ jHlj−1∕2KðH−1∕2

l xÞ,
and Hl is a bandwidth matrix, for l ¼ 1; 2.

To test the null hypothesis H0 : f 1 ¼ f 2, we follow Anderson
et al. (28), who proposed the following discrepancy measure
T ¼ ∫ ½f 1ðxÞ − f 2ðxÞ�2dx. As is the case in the rest of this manu-
script whenever the limits of integration are omitted, integration
is taken over the appropriate Euclidean space. We use the
squared error measure, since it has the most extensive body of
work in automatic optimal selection of the smoothing parameters
in comparison to other discrepancy measures such the absolute

error, Kullback-Leibler error, and Shannon-Jenson error. We
rewrite the discrepancy as T ¼ ψ1 þ ψ2 − ðψ1;2 þ ψ2;1Þ where
ψ l ¼ ∫ f lðxÞ2dx and ψ l1;l2 ¼ ∫ f l1ðxÞf l2ðxÞdx. The test statistic is
T̂ ¼ ψ̂1 þ ψ̂2 − ðψ̂1;2 þ ψ̂2;1Þ where

ψ̂1 ¼
1

n2
1
∑
n1

i1¼1
∑
n1

i2¼1

KH1
ðX i1 − X i2Þ;

ψ̂2 ¼
1

n2
2
∑
n2

j1¼1
∑
n2

j2¼1

KH2
ðY j1 − Y j2Þ

ψ̂1;2 ¼
1

n1n2 ∑
n1

i¼1
∑
n2

j¼1

KH1
ðX i − Y jÞ;

ψ̂2;1 ¼
1

n1n2 ∑
n1

i¼1
∑
n2

j¼1

KH2
ðX i − Y jÞ:

We can interpret this test statistic as the comparing intrasam-
ple pairwise differences X i1 − X i2 and Y j1 − Y j2 to the intersample
pairwise differences X i − Y j. So if the latter are larger than the
former, then this indicates that the samples are different. The fol-
lowing theorem is our main result, which establishes the asymp-
totic normality under the null hypothesis of the test statistic T̂.

Theorem 1. Under the conditions in the Methods section, and assum-
ing that the null hypothesis holds,H0 : f 1 ¼ f 2 ¼ f . As n1; n2 → ∞,

then T̂−μT
σT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1∕n1þ1∕n2
p →

d
Nð0; 1Þ, where μT ¼ ½n−1

1 jH1j−1∕2þ
n−1
2 jH2j−1∕2�Kð0Þ and σ2

T ¼ 3½∫ f ðxÞ3dx − ð∫ f ðxÞ2dxÞ2�.

Null Distribution Parameter Estimation. To use the asymptotic null
distribution, we need to estimate the mean parameter μT and the
variance parameter σ2

T . For μT , Chacón and Duong (29) showed
an algorithm to obtain consistent estimators of the bandwidth
matrices H1 and H2 as minimizers of the asymptotic Mean
Squared Error of ψ̂1 and ψ̂2 respectively. For σ2

T , it is straightfor-
ward to show that an estimator is σ̂2

T ¼ ðn1σ̂2
1 þ n2σ̂2

2 Þ∕ðn1 þ n2Þ
where σ̂2

1 is an estimator of σ2
1 the variance of f 1ðXÞ and σ̂2

2

an estimator of σ2
2 the variance of f 2ðY Þ. Previous research has

indicated that asymptotic normal approximations of a null distri-
bution tend to reject the null hypothesis more often than is in-
dicated by the nominal level of significance (25). One of the
primary causes is the overestimation of the variance. In the con-
text of kernel estimators, this usually arises from using a band-
width which is optimal for density estimation, but which leads
to an inflated variance estimate. Our proposed solution is to
estimate the variance more directly using a larger bandwidth,
since larger bandwidths reduce the variance by mitigating the
effect that individual data points have on the value of the kernel
estimator. Examining the first order Taylor’s series expansion
about the expected value: f ðXÞ ∼ f ðEXÞ þ ðX − EXÞTDf ðEXÞ
where Df ¼ ½ ∂f∂x1

; ∂f
∂x2

;…; ∂f
∂xd

�T is the column vector of first partial
order derivatives, thus Var f ðXÞ ∼ ½Df ðEXÞ�TðVar XÞ½Df ðEXÞ�.
So plug-in estimators of σ2

1 and σ2
2 are σ̂2

1 ¼ ½Df̂ 1ðX̄ ;G1Þ�T
S1½Df̂ 1ðX̄ ;G1Þ� and σ̂2

2 ¼ ½Df̂ 2ðȲ ;G2Þ�TS2½Df̂ 2ðȲ ;G2Þ� where
Df̂ 1ðx; Ĝ1Þ ¼ n−1

1 ∑n1
i¼1 DKĜ1

ðx − X iÞ, Df̂ 2ðx; Ĝ2Þ ¼ n−1
2 ∑n2

j¼1

DKĜ2
ðx − Y jÞ; X̄ ; Ȳ are the sample means, Sl are the sample var-

iances, and Ĝl ¼ ½4∕ðdþ 4Þ�2∕ðdþ6ÞSln
−2∕ðdþ6Þ
l are the normal scale

selectors for a kernel estimator of the first density derivative (30).
Given these parameter estimates, the standard equation to

obtain a z-score from T̂ is Z ¼ T̂−μ̂T
σ̂T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1∕n1þ1∕n2
p . The p-value is then

computed from this z-score using standard software or tables.
The completely automatic testing procedure (including the para-
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meter estimation, and the computation of the test statistic and its
P-value) is programmed in the ks library (31) in the open-source
R programming language.

Simulated Data Analysis. To verify the performance of our kernel
density-based test for finite samples, we performed simulation
studies using pairs of mixture normal densities, mostly taken from
Chacón (32). The contour plots of these test densities as well
as representative scatter plots for the two considered sample
sizes (n ¼ 100 and n ¼ 1000) are displayed in Fig. 1. The first
pair Nðð−1∕2; 0Þ; I2Þ and Nðð1∕2; 0Þ; I2Þ represent two single
normal densities with identity variance, whose means are sepa-
rated by distance of 1. This example was treated as base case.
The second pair both are bimodal densities, 1∕2Nðð1; −1Þ; ΣÞþ
1∕2Nðð−1; 1Þ; ΣÞ and 1∕2Nðð1; −1Þ; ΣÞ þ 1∕2Nðð1; −1Þ; I2Þ
where Σ ¼ ½4∕9 4∕15; 4∕15 4∕9�. The lower right component
of the pairs was exactly the same, but their upper right component
was different, making it potentially a challenging case to distin-
guish between two finite samples. As a third example, we chose a
pair 3, Nðð0; 0Þ; I2Þ and 1∕2Nðð0; 0Þ; I2Þ þ 1∕10Nðð0; 0Þ; 1∕
16 I2Þ þ 1∕10Nðð−1; −1Þ; 1∕16 I2Þ þ 1∕10Nðð−1; 1Þ; 1∕16 I2Þþ
1∕10Nðð1; −1Þ; 1∕16 I2Þ þ 1∕10Nðð1; 1Þ; 1∕16 I2Þ, that have (ap-
proximately) zero mean and identity variance. Because this pair
reveals different internal structure, it would most likely benefit
from a density-based, rather than a moment-based, test.

First, we verified the asymptotic normality of T̂ by comparing
the density estimates of the z-scores with the standard normal
(Fig. S1). The larger sample gave better estimates of the zero
mean. On the other hand, performance in variance estimation
was more uneven, since the n ¼ 1000 samples did not lead to
better variance estimates for pair 2. Related results have been
observed previously (25), indicating that the variance estimation
is the most difficult part in calibrating an asymptotically normal
null distribution.

We performed simulations of the test statistic for two common
nominal levels of significance α ¼ 0.05, 0.01 (Table 1), where α is
the error rate of rejecting the null hypothesis H0 when the null
hypothesis is true (false positive). To estimate how close our sta-
tistical test in achieving this error rate, we computed the propor-
tions of experiments ðα̂Þ where two samples are simulated from
the same distribution, which reject H0. Given a level of signifi-
cance, the other error that can be made is to accept the null
hypothesis H0 when it is false (false negative). We estimated this
by computing the proportion of the experiments ðβ̂Þ where two
samples are simulated from different distributions, which H0 is
accepted. The empirical power is 1 − β̂. For the smaller sample
size, we found that the empirical significance levels were close to

the nominal values, but the power was low for pairs 2 and 3. This
indicated that n ¼ 100 data points were not sufficient to distin-
guish reliably between these more difficult comparisons. For the
larger sample, the lack of power was resolved for all three pairs.
The empirical levels of significance were more conservative for
the larger sample size. This simulation evidence demonstrated
that our proposed test does not identify more false positives than
expected from the nominal level of significance and identifies
almost all true negatives.

To evaluate the performance of our test, we compared it to a
parametric alternative. The t-test is a well-known hypothesis test
for univariate data, which has been generalized for multivariate
data in Nel and Van der Merwe (33). The average P-values from
100 simulations of sample size 1000 were computed for each of
the three pairs target densities (Table S1). As expected, the mod-
ified Nel and Van der Merwe (MNV) was more sensitive for the
first pair, which only differed in mean (average P-value ¼ 0).
However, the kernel test was still highly significant (average
P-value ¼ 1.142 � 10−29). For the next two pairs with similar
mean values but clear differences in the internal organizations
between the two densities, the MNV test gave nonsignificant
average P-values of 0.5195 and 0.2158, whereas the kernel-based
test gave highly significant average P-values of 1.353 � 10−8 and
3.386 � 10−23. This demonstrated that our density-based test
outperformed the parametric MNV test in the detection of dif-
ferences in internal organization.

Detection of Morphological Changes in Micropatterned Cells after
Drug Treatment. To evaluate how our test is performing on experi-
mental data, we compared the morphologies of intracellular struc-
tures under different experimental conditions (Fig. 2). As indi-
cated in the flowchart (Fig. 2A), we analyzed the morphology
changes of multivesicular bodies (MVB) induced by a treatment
with the drug nocodazole (NZ) that depolymerizes microtubules,
a major component of the cellular cytoskeleton. MVB are endo-
somes involved in several important cellular functions, including
processing of nutrients, ligands and receptors during endocytosis,
exosome secretion, and autophagy (34) that are transported along
microtubules (35). Intracellular MVB were visualized by indirect
immunofluorescence against CD63, a transmembrane protein en-
riched in MVB (Fig. 2B). Cells were cultured on micropatterns of
extracellular matrix proteins that standardize cell shape and allow
alignment of CD63-marked structures. Combining the signals of
CD63-marked components from several tens of cells, we showed
that the 3D organization of MVB is reproducible in these normal-
ized conditions (17). Disruption of microtubules with NZ discon-
nects MVB from microtubules, leading to subtle changes in cell
morphology (Fig. 2C). We transformed the fluorescent signal
of normalized cells into coordinates by segmentation analysis as
previously reported (17). All detected signals from a control group
of cells and a group of cells exposed to treatment conditions were
combined to the test populations f 1 and f 2, respectively. In pre-
vious analysis, we estimated that pooling signals from about 20–30
normalized cells (containing several hundreds of structures each)

Fig. 1. Contour plots of simulated data. Contour plots for three pairs of
simulated normal mixture densities (Left). Representative scatter plots for
n ¼ 100 (Middle). Representative scatter plots for n ¼ 1000 (Right).

Table 1. Simulation results

Nominal
α ¼ 0.05

Nominal
α ¼ 0.01 Z

α̂ 1 − β̂ α̂ 1 − β̂ mean SD
Pair 1 0.010 0.914 0.002 0.830 −0.226 0.781

n ¼ 100 Pair 2 0.018 0.052 0.004 0.026 −0.285 0.919
Pair 3 0.038 0.446 0.010 0.264 −0.160 1.019
Pair 1 0.018 1.000 0.006 1.000 −0.1379 0.760

n ¼ 1000 Pair 2 0.020 0.946 0.006 0.810 −0.0625 0.758
Pair 3 0.074 1.000 0.026 1.000 −0.0001 1.191

Comparison of empirical level of significance (α̂) to the nominal level (α),
empirical power (1 − β̂) and central moments of the null distribution of the
normalized T̂ for n ¼ 100; n ¼ 1000.
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was required to produce reliable density maps (17). So we
took these cell numbers as a starting point for our comparisons.
Representative 2D and 3D scatter plots of 40 cells are shown in
Fig. 2D–G; the 2D scatter plots of individual cells are represented
in Fig. S2. The coordinates from 40 cells from each condition were
compared by T̂.

First, we compared a nontreated control group 1 of 40 cells
with 11786 detected structures with a second control group 2
of 40 cells containing 12585 structures. The two control samples
gave slightly different estimates of the CD63 steady-state distri-
bution (Fig. S3). We estimated the normalized T̂2D ¼ 0.6492
and T̂3D ¼ 1.2066 corresponding to P2D-value of 0.2581 and
P3D-value ¼ 0.1138. So there is strong evidence that the minor
differences between the two control samples are not significant.

We then compared the control group 1 with the NZ treated
group of 40 cells with 13615 detected structures. For the control
versus treatment condition, we estimated the normalized T̂2D ¼
4.160 and T̂3D ¼ 6.670 giving rise to P2D-value of 1.589 � 10−5

and P3D-value ¼ 1.280 � 10−11, indicating that there is strong evi-
dence that the drug treatment significantly affects the distribution
of MVB. These results agree with previous studies demonstrating
microtubule-dependent movement of MVB (35). To further eval-
uate our approach, we performed additional analysis of diverse
subcellular structures (SI Text, Fig. S4, and Table S2).

Second, we compared how our test is performing in compar-
ison to a resampling strategy that was previously established for
the comparison of fluorescent images (17). We calculated average
P-values from either our test statistics or the permutation analysis
as a function of the number of cells analyzed, taking 100 random
samples of 1, 2, 10, 20, and 40 cells (Fig. 2H, Table S3). First, we

randomly picked two subsamples from the control conditions
(Ctrl) to estimate the false positive rate of our test. Then we com-
pared one control subsample with one subsample taken from
treated condition (NZ). Dashed lines represent the permutation
test; solid lines represent the kernel density test (Fig. 2H). Ac-
cording to the fundamental P-value calculations, P-values follow
a uniform distribution on [0, 1] and thus mean 0.5, assuming the
null hypothesis holds as expected for Ctrl. This is true for the per-
mutation test, since it can mimic the sampling distribution of the
test statistic. The kernel density test gives more small P-values
(false positives) than predicted due to the asymptotic approxima-
tion (see also Fig. S5). However, an average P-value > 0.05 was
obtained in each case, not rejecting the null hypothesis at the
usual significance levels. Applied to the comparison between Ctrl
and NZ treatment, the kernel density test gives lower P-values
(more true positives) that the permutation test for <10 cells. To-
gether, these two tests gave the same conclusions when testing a
treatment for more than 10 cells (as typically analyzed), demon-
strating that the normal approximation for the sampling distribu-
tion was as accurate as bootstrap resampling in this case. Thus,
our test statistic is comparable to bootstrap resampling.

Next, we evaluated how sensitive our method is to errors in
cell alignment on patterned substrates. We systematically esti-
mated how strongly our test statistic degrades as a function
of rotational and translational misalignment (see SI Text and
Table S4). Overall, as expected, the P-values uniformly decrease
as the magnitude of misalignment increases. As expected from
the simulated data analysis, our test was highly sensitive when the
entire cell sample to be compared was misaligned. Both rotations
of as little as 10° and translations of 20–30 pixels were sufficient to
give significant P-values (P < 0.05) (pattern size was 550 pixels).
Our test was, however, less sensitive to random misalignment in
individual cells within one sample. Significant P-values for rota-
tions appeared at 30–40° and at 30–50 pixels for translations. This
analysis highlights the importance of cell alignment to reduce
false positive results. Together, our analysis on CD63 demon-
strated that the density-based comparison is well suited to detect
changes in steady-state morphology of cells cultured under con-
trolled conditions of adhesion.

Detection of Morphological Changes in Live-Cell Assays in Uncon-
strained Cells. To demonstrate that our density-based framework
is also valid for the detection of morphological changes in uncon-
strained cells that are classically studied, we applied our test to
live cell analysis. Because cells maintained a consistent orienta-
tion during a given time period, fast changes in intracellular or-
ganization as observed after drug treatments could be analyzed by
our density-based method. We comprehensively benchmarked
the statistical method on the dynamics of MVB in unconstrained
cells before and after treatment with NZ (Fig. 3). We acquired 3D
stacks over 24 min with acquisition at each 60 s, extracted 3D
positional information of labeled compartments by segmentation,
and compared morphology changes.

We split the images of Movie S1 into four groups (1–4)
containing six images each (Fig. 3A). Groups 1 and 2 represented
the nontreated control groups, with 1080 and 1002 detected
CD63-positive structures that were acquired before addition of
the drug. Groups 3 and 4 were the treatment test groups, contain-
ing 1019 and 801 structures that were recorded after the addition
of the drug. The corresponding 2D and 3D scatter plots of the
four groups are shown in Fig. 3B and C. We applied our test
statistic on each of the possible combination of pairs. The corre-
sponding P-values for the 2D and 3D comparison are listed in
Table S5. The results indicated that whereas no significant
changes in CD63 morphology was detected before drug treat-
ment (P2D-value ¼ 0.4136; P3D-value ¼ 0.3565), the treatment
with NZ significantly affected CD63-morphology (P2D-value ¼
3.998 � 10−6; P3D-value ¼ 4.844 � 10−6). The effect of the drug

Fig. 2. Changes of CD63 morphology upon disruption of the microtubule
cytoskeleton. (A) Flow chart of morphology comparison between two popu-
lations of cells seeded on micropatterned substrates. (B), (C) Maximum inten-
sity projection of the deconvolved fluorescence of CD63-marked multivesicu-
lar bodies (MVB) without treatment (Ctrl) (B) and upon nocodazole (NZ)
treatment (C). Scale bars are 10 μm. (D), (E) Representative 2D scatter plots
for 40 cells with n ¼ 11786 structures for Ctrl (D) and for 40 cells with n ¼
13615 structures for NZ (E). (F), (G) Representative 3D scatter plots for Ctrl
(F) and NZ treatment (G) The z-axis is zoomed 500%. (H) Average P-values
from kernel test (solid lines) and permutation analysis (dashed lines) as
a function of the number of cells analyzed for 100 comparisons. Average
P-values for test statistics for Ctrl (black) and NZ treatments (gray).
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was more significant for later time points in agreement with
visual inspection of the images, demonstrating that the statistical
significance can quantify compound influence. Thus, our ap-
proach allowed unbiased automated detection of morphological
changes in live-cell assays in unconstrained cells.

Discussion
We have developed a test statistic which inherits the advantages
of kernel density estimates to facilitate generally applicable
two-sample comparisons of multivariate data. By drawing on
recent distributional results for kernel estimators, we were able
to express its null distribution in a closed asymptotic form, thus
circumventing the requirement for resampling to determine the
critical quantiles of the null distribution.

This test allowed us to compare complex data from fluorescent
microscopy without reducing the provided information into sim-
ple summary statistics. This allowed quantitative comparison of
cellular morphology by directly measuring the three-dimensional
organization of intracellular structures visualized by fluorescent
microscopy. Note that our proposed image comparison focuses
on the spatial localization of structures whose point coordinates
can be resolved. It is also applicable to the comparison of con-
tinuous structures, such as microtubules, but performance is
not optimal. As our test statistic requires independent data points
(like most kernel-based estimators), the representation of contin-
uous structures by several connected coordinates leads to smaller
P-values. This is a disadvantage compared to commonly used
feature-based techniques that collate any type of measured quan-
tity from the microscopy images and therefore can also be applied
even to diffuse fluorescent patterns. However, feature-based
comparisons require the critical stage of feature selection to be
calibrated carefully for each comparison (15), especially in order
to compute P-values. So the challenge to automatize optimal
feature selection into a black-box method remains an open pro-
blem. Our simpler, more direct approach of comparing spatial
distributions does not face equivalent problems allowing full

automatization. As image acquisition facilities are developed at
an accelerated speed, there is a rising need for image analysis
tools that estimate the required test parameters directly from
the data and do not require computationally intensive analytical
techniques. As feature-based and density-based approaches use
different numerical information, they are complementary to each
other and the combination of both of them should lead to an
improvement of image analysis.

Such computational imaging methods are indispensable tools
for the high-content and high-throughput image acquisition
capability of advanced microscopes that daily acquire thousands
of high-resolution images in time-lapse experiments. We have
shown that our density-based mathematical framework is power-
ful for phenotype profiling and can be easily adjusted to high-
throughput analysis. Attempts are underway to incorporate this
computational imaging comparison into a high-throughput work-
flow to screen for cell morphological changes due to chemical
compounds treatment and siRNA-based gene silencing.

A second disadvantage of our approach is that it requires the
cells to have a constant shape in order to construct spatial density
maps and the test statistic. Fortunately, the micropatterning
technique allows us to grow cells reproducibly into standardized
shapes in culture. One important advantage of growing cells in
controlled conditions of adhesion is that cells are much closer to
their physiological state in tissues, where cells are restrained, than
in classical (unconstrained) culture conditions on Petri dishes.
Another advantage is that standardizing cells by micropatterning
technology represents an important step towards quantitative
approaches in cell biology. We have also shown that our testing
procedure can be applied to live cell comparisons. By orienting an
unconstrained cell through time, we validate that unconstrained
cells are in principle analyzable. However, alignment of uncon-
strained cells with the help of computational approaches (36, 37)
will be a requisite in order to apply density-based comparison as a
general approach for unconstrained cells. An important future
application is to compare cell spatial morphology in tissues, in
which many cell types show reproducible shapes and inherent
polarization. In particular, this application would be important
to detect alterations in the cellular architecture during patholo-
gical processes such as cancer. Since imaging and alignment of
tissue cells is more challenging, it is not yet suitable to apply our
testing procedure.

A promising extension of our test is to elaborate the regions of
the sample space, which are the largest contributors to the overall
statistical difference. There have been some attempts to tackle
this problem (38) using a heuristic density differences approach
based on data mining approaches, but which is unable to make
rigorous statistical inferences. Developing a rigorous analogue
would be an important advance for the analysis of the multivari-
ate samples comparisons. Another future challenge is analyzing
structures with a diffuse fluorescence. An alternative is to consid-
er diffuse fluorescence patterns as functional data; i.e., not to be
finite dimensional vectors (as in multivariate analysis) but infinite
dimensional functions. The state of the art in formal hypothesis
testing for functional data analysis is less advanced than in multi-
variate data analysis, leaving a testing procedure for functional
data analogous to our proposed statistic an open problem.

Methods
Proof of Theorem 1: To establish the asymptotic sampling distribution of T̂ ,
we follow the approach of Chacón and Duong (29). Suppose that the condi-
tions hold. For l ¼ 1, 2,

(F) The target densities f l have two derivatives, which are bounded,
continuous, and square integrable.

(H) The bandwidths Hl ¼ HlðnlÞ are a sequence of symmetric, positive de-
finite matrices such that all elements of Hl → 0 and n−1

l jHl j−1∕2 → 0 as nl → ∞.
(K) The kernel K is a symmetric probability density function such that

m0ðK 2Þ ¼ ∫KðxÞ2dx is finite, and that ∫ xx TKðxÞdx ¼ m2ðKÞId for some real
number m2ðKÞ and Id is the d × d identity matrix.

Fig. 3. Time lapse of CD63 morphology change upon microtubule disrup-
tion. (A) Maximum intensity projections of EGFP-CD63-marked multivesicular
bodies (MVB) upon nocodazole (NZ) treatment. Each group represents six
time frames with 1-min intervals: Group 1 and Group 2 show CD63 before
addition of NZ; Group 3 and Group 4 show CD63 after the addition of
NZ. Scale bars are 10 μm. (B), (C) Representative 2D (B) and 3D (C) scatter plots
for each group with n structures analyzed.
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(N) The sample sizes n1; n2 are such that n1∕n2 and n2∕n1 are bounded
away from zero and infinity as n1; n2 → ∞. The proof is deferred to the
SI Text.

Cells and Sample Preparation. Cell culture and sample preparation for fixed
cells was as in ref. 17. Antibodies used were primary α-CD63 (Invitrogen),
Sec13 (17), α-tubulin (BD Biosciences) and Alexa-Fluor 488, Cy-3, or Cy-5-
coupled secondary antibodies. EGFP-CD63-expressing stable cells (generated
by transfection of the plasmid pEGFP-CD63 (34) into RPE-1 cells) were seeded
on iwaki glass base dishes (Asahi Glass) for live cell observation. To depoly-
merize microtubules, NZ was added to a final concentration of 20 μM. Cells
were imaged before and after addition of NZ.

Immunofluorescence Image Acquisition and Processing. Image acquisition of
fixed cells was as in ref. 17. Live cell imaging was performed on a Yokogawa
spinning disc mounted on an Eclipse TE2000 Inverted Microscope using 60x
Plan Apo VC 1.4 Oil objective, Laser 491 nm and CCD camera (Roper CoolSnap
HQ2). Z-series of images were taken every 0.2 μm every 60 s.

Images were segmented with MetaMorph (Universal Imaging Corpora-
tion) as described in ref. 17. Briefly, the centroids of fluorescent objects were
detected as fluctuations that are 15-fold larger than noise. The watershed
function was routinely applied to precisely detect individual structures in
dense regions. The coordinates of the segmented structures were aligned
using the center of the micropatterns as in ref. 17 and used in a completely
automatic testing procedure programmed in the ks library (31) in the open-
source R programming language.
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Analysis of Continuous Intracellular Structures in Micropatterned
Cells. To further evaluate our approach, we performed additional
analysis of diverse subcellular structures. We analyzed a sample
of each 32 cells that we stained for endoplasmic reticulum exit
sites marked by Sec13 (a membrane domain) and microtubules
marked by α-tubulin, in the presence and absence of the drug
nocodazole (Fig. S5). Additionally, we analyzed Rab8-marked
membrane domains that were visualized by a stably overex-
pressed green fluorescent protein (GFP)-Rab8 fusion. Rab8 is
a small GTPase that regulates trafficking into the primary cilium
(Fig. S5). Thus, we asked whether our test statistic could distin-
guish between the presence or absence of a primary cilium in a
given cell population. To represent continuous structures (micro-
tubules and Rab8-marked membranes domains) by a cloud of co-
ordinates, we “cut” them in several small structures by increasing
the watershed during segmentation. Because these coordinates
from continuous structures were not independent, our test statis-
tic became suboptimal. Indeed, the formula for the estimated var-
iance is divided by the number of independent structures; thus,
the variance is overestimated for dependent structures, leading
to smaller P-values. Whereas the P2D-values for control half
samples for microtubules and Rab8-marked membranes were
not significant, the corresponding P3D-values became significant
(Table S3). Contrary, for Sec13 that are independent structures
(same cells as for microtubules), the 2D and 3D P-values are all
nonsignificant for control half samples. Thus, for dependent
structures, the estimated variance needs to be divided by a num-
ber smaller than the number of structures. The adjustment factor
required is not straightforward to calculate, as it requires model-
ing of the correlation between the dependent structures. None-
theless, even though the computed P3D-values for microtubules
and Rab8-marked membranes were smaller than their true va-
lues, we could still clearly distinguish between polarized and de-
polarized microtubules and the absence or presence of a primary
cilium marked by Rab8. The P-values between control half sam-
ples were orders of magnitude bigger than those for the compar-
ison of different conditions (Table S3).

Sensitivity of the Statistical Test to Cell Alignment. To evaluate how
sensitive our method is to errors in cell alignment on patterned
substrates, we performed rotational or translational operations to
represent different types of experimentally misaligned images.
We focused on the untreated samples control 1 and control 2,
artificially misaligned control 2, and compared each of these mis-
aligned control 2 samples to original control 1 sample (Table S4).
First, we misaligned the entire cell sample control 2 by (a) rota-
tion of all structures about the Z-axis by a fixed angle, ranging
from 10° to 50° in steps of 10°; (b) translation of all structures
in the X-axis by a fixed distance, ranging from 10 to 50 pixels,
in steps of 10 pixels. As expected from the simulated data, our
test was very sensitive to this batch misalignment, since even
10° was sufficient to give a significant P-value (a). For the transla-
tions in the X-axis, the 2D P-value became significant for 30 pix-
els, and 3D P-value for 20 pixels. Next, we randomly misaligned
individual cells within one sample by (c) rotation of each struc-
ture by a random angle about the Z-axis, uniformly randomly se-
lected in the interval ½−d°; d°�, with d ranging from 10 to 100, in

steps of 10; (d) translation of each structure by a random distance
in the X-Y plane, uniformly randomly selected ½−d; d� pixels,
with d ranging from 10 to 100, in steps of 10. In this case, our
test was less sensitive. Significant 2D P-values appeared at
½−40°; 40°�, 3D P-values at ½−30°; 30°�; thus, small misrotations
did not affect the statistical significance. For the translations,
½−50; 50� pixels were required to perturb the control 2 sample
sufficiently to produce a significant 2D P-value, and ½−30; 30� pix-
els for the 3D test. Together, this analysis demonstrated that mis-
aligned samples lead to false positives.

Proof: For general r, let ψ ðrÞ
l ¼ ∫D⊗rf lðxÞf lðxÞdx. Here, D is the

differential operator and the r-fold Kronecker product is denoted
by the ⊗r superscript; e.g., D⊗3 ¼ D ⊗ D ⊗ D. Thus, D⊗ r is the
r-th order differential operator arranged into a vector of length dr

(1). From Chacón and Duong (2), the expected value of ψ̂ l is
Eψ̂ l ¼ ψ l þ f1∕2ðvecTHlÞψ ð2Þ

l þ n−1KHl
ð0Þgf1þ oð1Þg For the

cross-product integrated density functional,

Eψ̂ l1;l2 ¼ EKHl1
ðX − Y Þ ¼

ZZ

KHl1
ðx − yÞf 1ðxÞf 2ðyÞdxdy

¼ ψ l1;l2 þ
1

2
ðvec THl1

Þ
Z

D⊗2

f l1ðxÞf l2ðxÞdxf1þ oð1Þg:

where ðl1; l2Þ ¼ ð1; 2Þ or (2, 1). Thus, the expected value of T̂ is

ET̂ ¼ Eψ̂1 þ Eψ̂2 − ðEψ̂1;2 þ Eψ̂2;1Þ
¼ ψ1 þ ψ2 − ðψ1;2 þ ψ2;1Þ

þ
�

1

2
ðvec TH1Þψ ð2Þ

1 þ 1

2
ðvec TH2Þψ ð2Þ

2 þ n−1
1 jH1j−1∕2Kð0Þ

þ n−1
2 jH2j−1∕2Kð0Þ − 1

2
ðvecTH1Þ

Z

D⊗2

f 1ðxÞf 2ðxÞdx

−
1

2
ðvec TH2Þ

Z

D⊗2

f 2ðxÞf 1ðxÞdx
�

f1þ oð1Þg:

The variance is

Var T̂ ¼ Var½ψ̂1 þ ψ̂2 − ðψ̂1;2 þ ψ̂2;1Þ�
¼ Var ψ̂1 þVar ψ̂2 þVar ψ̂1;2 þVar ψ̂2;1

− 2Covðψ̂1; ψ̂1;2Þ − 2Covðψ̂1; ψ̂2;1Þ − 2Covðψ̂2; ψ̂1;2Þ
− 2Covðψ̂2; ψ̂2;1Þ þ 2Covðψ̂1;2; ψ̂2;1Þ

since Covðψ̂1; ψ̂2Þ ¼ 0. From Chacón and Duong (2),

ψ̂1 ¼ f4n−1
l ðξ1 − ψ 2

l Þ þ 2n−2
l ψ ljHlj−1∕2m0ðK 2Þgf1þ oð1Þg;

where ξl ¼ ∫ f lðxÞ3dx. From Lee and Dehling (3, Theorem 1),
Var ψ̂1;2 ¼ n−1

1 Var½ðKH1
� f 2ÞðXÞ�f1þ oð1Þg a n d Varψ̂2;1¼
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n−1
2 Var½ðKH2

� f 1ÞðY Þ�f1þoð1Þg where � is the convolution
operator. So we have Var ψ̂ l1;l2 ¼ n−1

l1
½∫ f l1ðxÞ2f l2ðxÞdx − ψ 2

l1;l2
�

f1þ oð1Þg since

E½ðKH1
� f 2ÞðXÞ�¼

Z Z

KH1
ðx−yÞf 1ðxÞf 2ðyÞdxdy¼ψ1;2f1þoð1Þg

E½ðKH2
� f 1ÞðY Þ�¼

Z Z

KH2
ðx−yÞf 2ðxÞf 1ðyÞdxdy¼ψ2;1f1þoð1Þg

E½ðKH1
� f 2ÞðXÞ2�¼

Z

ðKH1
� f 2ÞðxÞ2f 1ðxÞdx

¼
Z

ff 2ðxÞþoð1Þg2f 1ðxÞdx

¼
Z

f 1ðxÞf 2ðxÞ2f1þoð1Þgdx;

and likewise E½ðKH2
� f 1ÞðXÞ2� ¼ ∫ f 1ðxÞ2f 2ðxÞf1þ oð1Þgdx. For

the remaining covariance terms,

Covðψ̂1;ψ̂1;2Þ¼n−1
1 E½KH1

ðX1−X2ÞKH1
ðX1−YÞ�

−n−1
1 E½KH1

ðX1−X2Þ�E½KH1
ðX1−Y Þ�

¼n−1
1 ½

Z Z Z

KH1
ðx−yÞKH1

ðx−zÞf 1ðxÞf 1ðyÞf 2ðzÞdxdydz

−ψ1ψ1;2�f1þoð1Þg

¼n−1
1 ½

Z

f 1ðxÞ2f 2ðxÞdx−ψ1ψ1;2�f1þoð1Þg:

S o mo r e g e n e r a l l y , b y s ymme t r y , Covðψ̂ l0 ; ψ̂ l1;l2Þ ¼
n−1
l0
½∫ f l0ðxÞf l1ðxÞf l2ðxÞdx − ψ l0ψ l1;l2 �f1þ oð1Þg; and

Covðψ̂1;2; ψ̂2;1Þ ¼ n−1
1 n−1

2 Cov½KH1
ðX − Y ÞKH2

ðX − Y Þ�
þ ðn1 − 1Þ−1n−1

1 n−1
2 Cov½KH1

ðX1 − Y ÞKH2
ðX2 − Y Þ�

þ n−1
1 ðn2 − 1Þ−1n−1

2 Cov½KH1
ðX − Y 1ÞKH2

ðX − Y 2Þ�

¼
�

1

2
n−1
1 n−1

2 ½ψ1;2jH1j−1∕2
Z

KðxÞKH2H−1
1
ðxÞdx − ψ 2

1;2

þ ψ2;1jH2j−1∕2
Z

KðxÞKH1H−1
2
ðxÞdx − ψ 2

2;1�

þ n−1
1 ½

Z

f 1ðxÞ2f 2ðxÞdx − ψ 2
1;2�

þ n−1
2 ½

Z

f 1ðxÞf 2ðxÞ2dx − ψ 2
2;1�

�

f1þ oð1Þg:

whe r e a s sump t i on (N) en su r e s t h a t t h e i n t e g r a l s
∫KðxÞKH2H−1

1
ðxÞdx and ∫KðxÞKH1H−1

2
ðxÞdx are Oð1Þ. Combining

these expressions, the variance is

Var T̂ ¼ f4n−1
1 ðξ1 − ψ 2

1 Þ þ 2n−2
1 ψ1jH1j−1∕2m0ðK 2Þ

þ 4n−1
1 ðξ2 − ψ 2

2 Þ þ 2n−2
2 ψ2jH2j−1∕2m0ðK 2Þ

þ 3n−1
1 ½

Z

f 1ðxÞ2f 2ðxÞdx − ψ 2
1;2�

þ 3n−1
2 ½

Z

f 1ðxÞf 2ðxÞ2dx − ψ 2
2;1�

− 4n−1
1 ½

Z

f 1ðxÞ2f 2ðxÞdx − ψ1ψ1;2�

− 4n−1
2 ½

Z

f 1ðxÞf 2ðxÞ2dx − ψ2ψ1;2�

þ n−1
1 n−1

2 ½ψ1;2jH1j−1∕2
Z

KðxÞKH2H−1
1
ðxÞdx − ψ 2

1;2

þ ψ2;1jH2j−1∕2
Z

KðxÞKH1H−1
2
ðxÞdx

− ψ 2
2;1�gf1þ oð1Þg:

From Chacón and Duong (2), an optimal bandwidth for ψ̂ l is
Hl ¼ Oðn−2∕ðdþ2Þ

l Þ then Var T̂ ¼ Oðn−1
1 þ n−1

2 þ n−1
1 n−2∕ðdþ2Þ

1 þ
n−1
2 n−2∕ðdþ2Þ

2 þ n−1
1 n−2∕ðdþ2Þ

2 þ n−1
1 n−2∕ðdþ2Þ

2 Þ; i . e . , t h e
Oðn−1

1 þ n−1
2 Þ terms dominate, so

Var T̂ ¼ f4n−1
1 ðξ1 − ψ 2

1 Þ þ 4n−1
1 ðξ2 − ψ 2

2 Þ þ n−1
1 ½4ψ1ψ1;2

−
Z

f 1ðxÞ2f 2ðxÞdx − 3ψ 2
1;2� þ n−1

2 ½4ψ2ψ1;2

−
Z

f 1ðxÞf 2ðxÞ2dx − 3ψ 2
2;1�gf1þ oð1Þg:

Under the null hypothesis, f 1 ≡ f 2 ≡ f , so we have
ψ ðrÞ
1 ¼ ψ ðrÞ

2 ¼ ψ ðrÞ for all r, and that ψ1;2 ¼ ψ2;1 ¼ ψ. Thus,
the OðtrH1 þ trH2Þ terms in the bias vanish. Expanding the
Taylor series further yields that the next leading terms are
Oðtr2H1 þ tr2H2Þ. Thus the null expected value simplifies to

ET̂ ¼ μT ¼ ½n−1
1 jH1j−1∕2Kð0Þ þ n−1

2 jH1j−1∕2Kð0Þ�f1þ oð1Þg

since the Oðtr2H1 þ tr2H2Þ ¼ Oðn−4∕ðdþ2Þ
1 þ n−4∕ðdþ2Þ

2 Þ terms,
which are dominated by the Oðn−1

1 jH1j−1∕2 þ n−1
2 jH2j−1∕2Þ ¼

Oðn−2∕ðdþ2Þ
1 þ n−2∕ðdþ2Þ

2 Þ terms. So ET̂ is asymptotically zero
by assumption (H). The null variance simplifies to

Var T̂ ¼ 3ðn−1
1 þ n−1

2 Þ⌊
Z

f ðxÞ3dx − ð
Z

f ðxÞ2dxÞ2⌋f1þ oð1Þg:

Standard U-statistics theory, e.g., Theorem 7.1 (4), asserts the
asymptotic normality of ψ̂ l. More recently, Theorem 2 (3) estab-
lishes the asymptotic normality of ψ̂ l1;l2 , so the asymptotic nor-
mality of T̂ follows immediately.
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Fig. S1. Simulation results. Comparison of empirical null distribution of the normalized T̂ (solid black line) to the standard normal (gray dashed line) for the
second density in each target pair, for sample sizes n ¼ 100; n ¼ 1000.
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Fig. S2. 2D scatter plots for individual cells after alignment. (A), (B) Control experiments without treatments (Ctrl) with 40 cells each. (C) Nocodazole-
treatment experiment (NZ) with 40 cells.
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Fig. S3. Comparison of the morphology of multivesicular bodies (MVB) in independent control (Ctrl) experiments. (A) Representative 2D scatter plots for
two control groups of 40 cells each, with n ¼ 11786 structures for Ctrl and n ¼ 12585 structures for Ctrl2. (B) Representative 3D scatter plots for Ctrl and Ctrl2.
The z-axis is zoomed 500%.

Fig. S4. Comparison of themorphology of ER exit sites, microtubules, and Rab8-markedmembranes in different conditions. (A) Maximum intensity projection
of the deconvolved fluorescence of Sec13-marked ER exit sites (upper panel), α-tubulin-markedmicrotubules (middle panel) without treatment (Ctrl), and upon
nocodazole (NZ) treatment, as well as Rab8-marked membranes in the absence (NoC) and presence (C) of a primary cilium (lower panel). Scale bars are 10 μm.
(B) Representative 2D scatter plots for N cells. (C) Representative 3D scatter plots for N cells. The z-axis is zoomed 500%.
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Fig. S5. P-value distributions from density-based test. Box plot of 3D (A) and 2D (B) P-values for CD63 control and nocodazole-treatment conditions as a
function of the number of cells analyzed for 100 comparisons to indicate the spread of the P-values from kernel test. See also Fig. 2H.

Movie S1. Time lapse of the morphology of multivesicular bodies (MVB) upon disruption of the microtubule cytoskeleton. RPE-1 cells stably expressing
EGFP-CD63-marked MVBs were images using Z-series of 0.2 μm at time intervals of 60 s. Nocodazole was added at frame 12.

Movie S1 (AVI)

Table S1. P-value comparison between density-based test
and parametric t-test

Pair Sample size 2D KDE test 2D t-test (MNV test)

1 1000 1.142 � 10−29 0
2 1000 1.353 � 10−8 0.5195
3 1000 3.386 � 10−23 0.2158

Average P-values of 2D density-based and parametric t-test
(MNV) test statistics from 100 comparisons of simulated data
drawn from the 3 pairs of normal mixture densities in Fig. 1.
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Table S2. Comparison of the morphology of ER exit sites, microtubules and Rab8-marked membranes in different
conditions

2D P-values 3D P-values

Microtubules ER exit sites Rab8 Microtubules ER exit sites Rab8

Condition1 vs Condition1 1;1460E−01 3;5994E−01 1;3073E−01 6;1724E−04 3;1606E−01 8;2577E−03
Condition1 vs Condition 2 6;5862E−41 1;2151E−02 4;3428E−04 2;7758E−228 3;0281E−04 2;6783E−05

Average P-values of 2D and 3D KDE-based test statistic from 100 comparisons for the morphology of microtubules (N ¼ 16 cells
per condition), ER exit sites (N ¼ 16 cells per condition), and Rab8 membranes (N ¼ 27 cells per condition). Significant P-values are
bold. See also Fig. S4.

Table S3. P-value comparison between density-based test
and permutation analysis

CD63 NoT control

Sample size Permutation 3D KDE test

1 4;9460E−01 5;1911E−02
2 4;5910E−01 6;3279E−02
5 5;2430E−01 9;3159E−02
10 5;5170E−01 1;4794E−01
20 4;9590E−01 1;8011E−01
40 5;0770E−01 3;9350E−01

CD63 NZ
Sample size Permutation 3D KDE test
1 2;3900E−01 2;2195E−02
2 2;1410E−01 3;0114E−02
5 1;2260E−01 3;1677E−02
10 2;9600E−02 1;6527E−02
20 1;1000E−03 5;4816E−03
40 0 1;6996E−04

Average P-values of permutation and 3D KDE-based test statistics
from 100 comparisons, in which corresponding number of cells were
picked randomly from 100 Ctrl or 66 NZ-treated cells. Average P-
values for the permutation test were previously calculated (1).

1 Schauer K, et al. (2010) Probabilistic density maps to study global 44
endomembrane organization. Nat Methods 7:560–566.
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Table S4. Sensitivity of the statistical test to cell
alignment

Comparison of control 1 to 2D P-value 3D P-value

control 2 2.5811E−01 1.1379E−01
(a) control 2: Fixed Z-rotation (°)
10 1.2026E−02 3.1615E−04
20 1.2107E−08 4.4409E−16
30 4.3601E−22 9.7947E−42
40 1.4477E−43 1.6058E−79
50 1.0115E−71 1.6590E−124
(b) control 2: Fixed X-translation (pix)
10 1.7983E−01 5.9271E−02
20 5.1206E−02 3.7231E−03
30 2.7942E−03 3.3882E−06
40 9.3938E−06 1.8697E−12
50 5.4986E−10 2.0579E−23
(c) control 2: Random Z-rotation (°)
½−10; 10� 2.3342E−01 1.0459E−01
½−20; 20� 1.5036E−01 5.0567E−02
½−30; 30� 5.9005E−02 9.3238E−03
½−40; 40� 1.1310E−02 4.4162E−04
½−50; 50� 7.3779E−04 3.1049E−06
½−60; 60� 9.4306E−06 1.9971E−09
½−70; 70� 2.2935E−08 1.9107E−13
½80; −80� 2.0369E−11 1.4874E−17
½90; −90� 4.6629E−15 7.6345E−22
½−100; 100� 2.0921E−18 2.8145E−25
(d) control 2: Random X-Y-translation (pix)
½−10; 10� 2.3646E−01 1.0205E−01
½−20; 20� 1.9582E−01 7.7122E−02
½−30; 30� 1.4037E−01 4.3900E−02
½−40; 40� 8.1624E−02 1.6126E−02
½−50; 50� 3.3639E−02 2.9152E−03
½−60; 60� 8.5085E−03 1.8488E−04
½−70; 70� 1.1634E−03 3.1264E−06
½80; −80� 6.4743E−05 7.7590E−09
½90; −90� 1.2998E−06 2.4933E−12
½−100; 100� 8.9372E−09 1.1102E−16

Average P-values of 2D and 3D KDE-based test statistic from
100 comparisons, in which control 1 was compared to a
misaligned control 2. Significant P-values are bold.

Table S5. P-values for morphology changes of
unconstrained cells in live cell experiment

Group 1 (t−11−6) 2 (t−5−0) 3 (t1−6) 4 (t7−12)

1 (t−11−6) 2D 3.57E-01 4.29E-02 4.84E-06
2 (t−5−0) 4;14E−01 4.08E-02 2.48E-05
3 (t1−6) 4;96E−02 3;76E−02 8.48E-02
4 (t7−12) 4;00E−06 7;69E−07 1;15E−01 3D

P-values for the 2D and 3D (bold) KDE test statistic for the
comparison between the groups of images containing each
six time frames of EFGP-CD63-marked structures. Group 1 and
2 are nontreated controls acquired before addition of the
drug. Group 3 and 4 are nocodazole-treatment conditions
acquired after the addition of the drug. See also Fig. 3B.
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