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a b s t r a c t 

Nearest neighbour estimators of the order derivatives of the probability density function are introduced. 

We establish their squared error consistency, and most importantly for data analysis, an automatic, single 

pass normal scale or ‘rule of thumb’ selector of the number of nearest neighbours. Density derivatives 

are crucial components for statistical unsupervised learning based on density gradient ascent known as 

mean shift clustering. The proposed automatic choice of the nearest neighbours for density gradients is 

applied to the mean shift clustering and is demonstrated to discover accurately the number, location and 

shape of non-ellipsoidal clusters in multivariate data analysis and image segmentation. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Nearest neighbour estimators are well-suited to multivariate

data analysis as they intuitively adapt to the local data density.

Nearest neighbour estimators of the probability density function

were introduced in the seminal papers [26,27] and have been

widely used since due to their ease of implementation and inter-

pretation. Derivatives of the density function are important quan-

tities to analyse as they provide supplementary information about

the data set which is not revealed by the density function on its

own. Estimators of the first derivative (gradient) have been con-

sidered [16] , whereas higher order derivatives have not yet been

considered. 

We set up a framework for nearest neighbour estimators for the

general r th order derivatives of multivariate density functions. This

is achieved by following recent work in kernel estimators of den-

sity derivatives [6] and by exploiting the connection between near-

est neighbour and variable kernel estimators [21] . Whilst variable

kernel estimators of the density gradient [8,10] are mathematically

similar to their nearest neighbour analogues above, the key differ-

ence is that the former suffer from the data sparsity in higher di-

mensions whereas the latter do not. Modifications of kernel esti-

mators have been proposed to overcome the data sparsity problem

via reduced set density estimators [11,17] , though these authors did
� This paper has been recommended for acceptance by Andrea Torsello. 
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ot consider the extension to density derivatives. We do not pur-

ue this extension as we focus on nearest neighbour estimators. 

The local adaptivity of nearest neighbour estimators is con-

rolled by a single scalar parameter, namely the number of the

earest neighbours k . Almost all of the current proposals for se-

ecting k are based on cross-validation [1,23,25] or grid searches

23] of the density function, with a scarce focus on the density

erivatives. Furthermore, these multiple pass approaches are com-

utationally intensive as they evaluate the optimality criteria based

n (almost) the entire data set for a sequence of candidate values

f k . In contrast, we propose a single pass automatic selector for

stimating a general derivative of order r of the density function. 

Density derivatives, whilst being important quantities to esti-

ate in their own right, are also crucial components in statistical

achine learning methods, such as the mean shift clustering. This

as introduced by Fukunaga and Hostetler [16] as a more flexible,

on-parametric alternative to the classic k -means clustering. The

 -means clustering is the most widely used method for clustering

ultivariate data, despite that its limitations are well-known. The

ain advantages of the mean shift over the k -means is that the

ormer (a) can discover clusters of arbitrary shape and (b) exploits

he gradient ascent directionality in addition to the inter-point dis-

ances to form more representative clusters. 

The more widespread use of nearest neighbour methods for

ean shift clustering has been hampered by the lack of an efficient

elector for the number of nearest neighbours. Analogous to above

hoices of k for density estimation, the choice of k for clustering

ollows the cross validation and grid-based searches with respect

o minimising clustering quality indices e.g. the Silhouette index

22] . These are time consuming, even for moderately large data
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ets, as the (almost) entire data set must be clustered for each

alue of k in a sequence of candidate values, in order to find a

lobal optimum of the clustering quality indices. Our proposed au-

omatic nearest neighbour mean shift clustering (NNMS) uses the

 which is optimal for the density gradient estimation, in conjunc-

ion with the nearest neighbour estimators of the density and den-

ity gradient. We demonstrate that this k is an efficient empirical

hoice for clustering. 

In Section 2 , we introduce the analysis of nearest neighbour es-

imators of density derivatives by drawing upon their connection

o variable kernel estimators. Within this framework, we define an

utomatic, single pass normal scale selector of the optimal num-

er of nearest neighbours. In Section 3 , we apply this to the mean

hift clustering algorithm. In Section 4 , we examine the finite sam-

le behaviour of our proposed nearest neighbour mean shift clus-

ering NNMS in comparison to other modal clustering methods for

imulated and experimental data. The appendix contains the proofs

f the mathematical results in Section 2 . 

. Density derivative estimation 

The nearest neighbour estimator of a density function, as in-

roduced by Loftsgaarden and Quesenberry [26] and elaborated by

ack and Rosenblatt [27] , is 

ˆ f ( x ; k ) = 1 / [ nδ(k ) ( x ) 
d ] 

n ∑ 

i =1 

K(( x − X i ) /δ(k ) ( x )) (1) 

here x = (x 1 , . . . , x d ) , X i = (X i 1 , . . . , X id ) , and X 1 , . . . , X n are a d -

ariate random sample drawn from a common density f . Eq. (1) is

he mathematically most general form of a nearest neighbour den-

ity estimator as the kernel K can be any symmetric multivariate

ensity function. The mathematical analysis of nearest neighbour

stimators is simplified if we recast them as variable kernel esti-

ators [21] . A variable multivariate kernel estimator ˜ f with a vari-

ble bandwidth matrix function H ( x ) of the density is 

˜ f ( x ; H ( x )) = n 

−1 | H ( x ) | −1 / 2 
n ∑ 

i =1 

K(H ( x ) −1 / 2 ( x − X i )) , 

nd of the r th density derivative is 

 

�r ˜ f ( x ; H ( x )) 

= n 

−1 | H ( x ) | −1 / 2 (H ( x ) −1 / 2 ) �r 
n ∑ 

i =1 

D 

�r K(H ( x ) −1 / 2 ( x − X i )) 

here the differentiation of K with respect to x is carried out

eeping H ( x ) constant, and that the dependence on x is only re-

nstated after differentiation, employing an approach similar to

16] . The �r superscript indicates an r -fold Kronecker product,

hus the r th derivative D 

�r is organised as a d r -vector arising

rom an r -fold Kronecker product of the differential operator D =
(∂ /∂ x 1 ) , . . . , (∂ /∂ x d )] , see [19] . The connection between nearest

eighbour and variable kernel estimators [26,27] appears when

 ( x ) = δ(k ) ( x ) 
2 I d . This implies that the nearest neighbour estima-

or of the r th derivative of f follows as 

 

�r ˆ f ( x ; k ) = n 

−1 δ(k ) ( x ) 
−d−r 

n ∑ 

i =1 

D 

�r K(δ(k ) ( x ) 
−1 ( x − X i )) . (2) 

riting nearest neighbour estimators in this form in Eq. (2) greatly

acilitates the task for optimal selection of the number of nearest

eighbours. 

The most common criterion utilised for optimal smoothing

s the asymptotic mean integrated squared error (AMISE), which

s the leading asymptotic term of the integral of the mean

quared error between the target quantity and the estimator. We

tart with the AMISE of the fixed bandwidth kernel estimator
 

�r ˜ f (·; H ) , i.e., AMISE [ D 

�r ˜ f (·; H )] { 1 + o(1) } = 

∫ 
R d 

E [ D 

�r ˜ f ( x ; H ) −
 

�r f ( x )] 2 d x , as established by Chacón et al. [7, Theorem 2] . This

an be rewritten as 

MISE [ D 

�r ˜ f (·; H )] = n 

−1 | H | −1 / 2 tr ((H 

−1 ) �r R (D 

�r K)) 

+ (−1) r 
1 

4 

m 2 (K) 2 ψ 

T 
2 r+4 ( vec I d r � vec H 

�2 ) 

here R (D 

�r K) = 

∫ 
R d 

D 

�r K ( x ) D 

�r K ( x ) T d x , and m 2 (K ) I d =
 

R d 
x x T K( x ) d x and ψ 2 r+4 = 

∫ 
R d 

D 

�(2 r+4) f ( x ) f ( x ) d x . Replacing

 by H ( x ) = δ(k ) ( x ) 
2 I d results in a random quantity, so we com-

ute its expectation to derive an AMISE-like quantity for the

earest neighbour density derivative estimator D 

�r ˆ f (·; k ) , 

[ D 

�r ˆ f ( x ; k )] 

= E { AMISE [ D 

�r ˜ f (·; δ(k ) ( x ) 
2 I d )] } 

= tr (R (D 

�r K))[ v 0 f ( x )] (d+2 r) /d n 

2 r/d k −(d+2 r) /d 

+ (−1) r 
1 

4 

m 2 (K) 2 ψ 

T 
2 r+4 ( vec I d ) 

�(r+2) [ v 0 f ( x )] −4 /d n 

−4 /d k 4 /d 

(3) 

here v 0 = πd/ 2 �((d + 2) /d) is the hyper-volume of the unit d -

all. The derivation of Eq. (3) is contained in the proof of the

heorem 1 in the Appendix. As the first term is the integrated vari-

nce and the second term is the integrated squared bias of D 

�r ˆ f ,

he role of k in a bias-variance trade-off is established in Eq. (3) .

o A[ D 

�r ˆ f ( x ; k )] is a suitable basis for an optimality criterion. We

btain in Theorem 1 a closed form expression of 

 A ,r = 

∫ 
R d 

{ 

argmin 

k> 0 

A[ D 

�r ˆ f ( x ; k )] 

} 

d x 

hich serves as an optimal number of the nearest neighbours. 

heorem 1. Suppose that the conditions (A1–A3) in the Appendix

old. An optimal number of the nearest neighbours for D 

�r ˆ f is k A ,r =
 r n 

(2 r+4) / (d+2 r+4) where 

 r = v 0 

[
(d + 2 r) tr (R (D 

�r K)) 

(−1) r m 2 (K) 2 ψ 

T 
2 r+4 ( vec I d ) �(r+2) 

]d / (d +2 r+4) 

. 

When K = f = φ, where φ is the standard normal density, this

ields the normal scale selector 

 NS ,r = v 0 
[ 

4 

d + 2 r + 2 

] d / (d +2 r+4) 

n 

(2 r+4) / (d+2 r+4) . 

This k NS, r is closely related to the normal scale bandwidth se-

ector [4 / (d + 2 r + 2)] 2 / (d+2 r+4) n 2 / (d+2 r+4) I d for the kernel estima-

or D 

�r ˜ f in [7, Theorem 6] . 

Fig. 1 illustrates the importance of selecting a suitable value of

 . The contours of the target density gradient (r = 1) of the stan-

ard normal bivariate density is in Fig. 1 (a). The nearest neighbour

stimate with the normal scale selector k = k NS , 1 = 505 in Fig. 1 (b)

roduces a similar structure as the target contours. If a much

maller k = 50 is utilised, the resulting estimate in Fig. 1 (c) is con-

idered to be undersmoothed as it is too noisy. If a much larger

 = 10 0 0 is utilised, the resulting estimate in Fig. 1 (d) is consid-

red to be oversmoothed as it displays insufficient detail. The ker-

el utilised is the Epanechnikov kernel K( x ) = [(d + 2) / (2 v 0 )](1 −
 

T x ) 1 {‖ x ‖ ≤ 1) } . 
The pioneering work of Fukunaga and Hostetler [15] and Lofts-

aarden and Quesenberry [26] established the oracle local and

lobal mean squared error optimal selectors for density estima-

ors, though these authors did not consider data-based selectors.

erhaps Li [25] is the first to consider automatic data-based selec-

ion for nearest neighbour estimators, in the context of cross vali-

ation for regression. Authors who have proposed cross validation

electors for density estimation include [1,23] . The latter authors
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Fig. 1. Effect of the choice of k for nearest neighbour density gradient estimates for 

an n = 10 0 0 random sample from the bivariate standard normal density. (a) Con- 

tours of the target bivariate standard normal density gradient. (b) Nearest neigh- 

bour density gradient estimate with k = k NS , 1 = 505 . (c) Nearest neighbour density 

gradient estimate with k = 50 . (d) Nearest neighbour density gradient estimate with 

k = 10 0 0 . 
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Fig. 2. Nearest neighbour mean shift NNMS for an n = 10 0 0 random sample from 

the bivariate crescent density, with k = k NS , 1 = 505 . The data sample are the solid 

grey circles, the candidate point x 0 is the solid black circle, and x 23 is the final 

iterate. 
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[23] also suggest a grid based search for k . We observe that these

are multiple pass methods. In contrast, we propose an efficient,

single pass fully automatic selector for the nearest neighbour es-

timator of a general order r of the density derivative in Theorem 1 .

3. Mean shift clustering 

Whilst estimators of the density derivatives are important in

their own right, they also serve as crucial components in other

statistical analysis problems such as clustering. Modal clustering

methods [4,24] , where the clusters are defined as basins of attrac-

tions to the modes in the density function [32] , include the clas-

sic k -means and the more recent mean shift [16] . The k -means

method aims directly at estimating the number and location of

the ellipsoidal clusters, by minimising intra- and maximising inter-

cluster distances, where each ellipsoidal cluster is identified to the

mode of its normal mixture density component. Mean shift pro-

ceeds in an alternative, indirect manner based on local gradients,

and without imposing an ellipsoidal shape to the clusters. From a

candidate point x , the mean shift method generates a sequence of

points { x 0 , x 1 , . . . } which follows the gradient density ascent using

the recurrence relation 

x j+1 = x j + 

δ(k ) ( x j ) 
2 

d + 2 

D f ( x j ) 

f ( x j ) 
(4)

for j ≥ 1 and x 0 = x . Eq. (4) implies that the gradient is normalised

by the density. For regions of low density, this has the effect of

increasing the step size, and is the basis of its fast convergence

compared to unnormalised gradient methods [16] . 

It was established in [26] that the beta family kernels are com-

putationally efficient for estimating f and D f in Eq. (4) . The nearest

neighbour density estimator in Eq. (1) becomes 

ˆ f ( x ; k ) = n 

−1 
n ∑ 

i =1 

1 { X i ∈ B d ( x , δ(k ) ( x )) } = k/ [ v 0 nδ(k ) ( x ) 
d ] 
hen using the zeroth order beta kernel K( x ; 0) = v −1 
0 

1 { x ∈
 d ( 0 , 1) } , which is the uniform kernel on the unit d -ball B d ( 0 , 1).

he summation counts the number of data points which fall in-

ide B d ( x , δ( k ) ( x )), which is equal to k from the definition of δ( k ) ( x )

s the k th nearest neighbour distance to x . The nearest neighbour

stimator in Eq. (2) for the density gradient becomes 

 ̂

 f ( x ; k ) = 

ˆ f ( x ; k ) 
d + 2 

δ(k ) ( x ) 2 

[ 

1 

k 

n ∑ 

i =1 

X i 1 { X i ∈ B d ( x , δ(k ) ( x )) } − x 

] 

= 

ˆ f ( x ; k ) 
d + 2 

δ(k ) ( x ) 2 

[ 

1 

k 

∑ 

X i ∈ k −nn ( x ) 

X i − x 

] 

here k − nn ( x ) = { X i : X i ∈ B d ( x , δ(k ) ( x )) } is the set of the k

earest neighbours to x , when using the first order beta kernel

( x ; 1) = [(d + 2) / (2 v 0 )](1 − x T x ) 1 { x ∈ B d ( 0 , 1) } is the Epanech-

ikov (or quadratic) kernel, with derivative D K( x ; 1) = −[(d +
) / v 0 ] x 1 { x ∈ B d ( 0 , 1) } . 

Replacing D f ( x ) / f ( x ) by its estimator D ̂

 f ( x ; k ) / ̂  f ( x ; k ) in Eq.

4) we have that 

 j+1 = 

1 

k 

∑ 

X i ∈ k −nn ( x j ) 

X i (5)

his recurrence relation was introduced by Fukunaga and Hostetler

16] , beginning from a different starting point to us. Eq. (5) gives

he mean shift method its name since the current iterate x j is

hifted to the sample mean of its k nearest neighbours in the next

terate x j+1 . The convergence of the sequence { x 0 , x 1 , . . . } to a local

ode for the kernel version of Eq. (5) for a wide class of kernels

as established by Comaniciu and Meer [9, Theorem 1] for fixed

andwidths. Their proofs remain valid when the fixed bandwidth

s replaced with a number of nearest neighbours that decreases as

he iteration number increases. 

Fig. 2 illustrates Eq. (5) for a random sample of n = 10 0 0 points

rawn from a bivariate crescent density [6] , which has a mode

t the halfway point in the crescent. The candidate point is x =
(−1 . 27 , 0 . 30) , and the mean shift is initialised with x 0 = x . The

umber of nearest neighbours is k = k NS , 1 = 505 . Applying one it-

ration, we obtain x 1 = (−0 . 70 , 1 . 10) . The step size from x 0 is large

ince x 0 is located in a low density region. The algorithm termi-

ates at x 23 = (0 . 18 , 1 . 34) . The mean shift gradient ascent path is

iven by the blue arrows and black circles as the iterations con-

erge. The step sizes decrease in size as they approach the mode

ocated in a high density region. 

The gradient ascent paths towards the local modes produced by

q. (5) form the basis of Algorithm 1 , our nearest neighbour mean

hift clustering method NNMS. The inputs to NNMS are the data

ample X 1 , . . . , X n and the candidate points x 1 , . . . , x m 

which we

ish to cluster (these can be the same as X , . . . , X n , but this is
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Algorithm 1 NNMS Nearest neighbour mean shift. 

Input: { X 1 , . . . , X n } , { x 1 , . . . , x m 

} , k, ε 1 , j max , ε 2 , s min 

Output: { c( x 1 ) , . . . , c( x m 

) } 
/* Compute gradient ascent paths */ 

1: for � := 1 to m do 

2: j := 0 ; x �, 0 := x � ; 

3: x �, 1 := mean of k -nn of x �, 0 ; 

4: while ‖ x �, j+1 , x �, j ‖ > ε 1 or j < j max do 

5: j := j + 1 ; x �, j+1 := mean of k -nn of x �, j ; 

6: x ∗� := x �, j ; 

/* Create clusters by merging near final iterates */ 

7: for � 1 , � 2 := 1 to m do 

8: if ‖ x ∗� 1 − x ∗� 2 ‖ ≤ ε 2 then c( x ∗� 1 ) := c( x ∗� 2 ) ; 

/* Merge small clusters */ 

9: C ∗ := cluster with minimum cardinality; 

10: while card (C ∗) < s min do 

11: C ′ := nearest other cluster to C ∗; 

12: for x ∗� ∈ C ∗ do c( x ∗� ) := c(C ′ ) ; 
13: C ∗ := cluster with minimum cardinality; 

14: for � := 1 to m do c( x � ) := c( x ∗� ) ; 
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Fig. 3. Scatter plot matrices of the 4-crescent density data samples of size n = 

10 0 0 , for d = 2 , 3 , 4 , 5 . 
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ot required); and the tuning parameters: the number of nearest

eighbours k , the tolerance under which subsequent iterations in

he mean shift update are considered convergent ε 1 , the maximum

umber of iterations j max , the tolerance under which two cluster

entres are considered to form a single cluster ε 2 , and the mini-

um cluster size s min . The output are the cluster labels of the can-

idate points { c( x 1 ) , . . . , c( x m 

) } . There are three main sub-routines

o Algorithm 1 . Lines 1–6 correspond to gradient ascent paths in

q. (5) which are iterated until subsequent iterates are less than

 1 apart or the maximum number of iterations j max is reached.

he output from these lines are the final iterates x ∗1 , . . . , x 
∗
m 

. Lines

–8 concern merging the final iterates within ε 2 distance of each

ther into a single cluster, thus creating an initial clustering of

 

∗
1 , . . . , x 

∗
m 

. In Lines 9–13, if the smallest cluster is less than the

inimum cluster size s min , then it is iteratively merged into next

earest cluster, to produce cluster labels c( x ∗
1 
) , . . . , c( x ∗m 

) . Line 14

ssigns these cluster labels to the original data x 1 , . . . , x m 

. 

Data-based bandwidth selection based on the density gradient

as been demonstrated to be more suitable than that based on the

ensity itself for kernel mean shift clustering in [6] . It follows that

n optimal number of nearest neighbours mean shift can be 

 NS , 1 = v 0 [4 / (d + 4)] d / (d +6) n 

6 / (d+6) . (6)

 grid based search for k which minimises clustering quality in-

ices was proposed in [35] , and which is O ( n ). Our selector is O (1)

s it does not require this multiple pass approach. 

. Data analysis 

.1. Simulated data 

For mean shift clustering, we set the tuning parameters as fol-

ows: the mean shift iteration tolerance ε 1 is 0.005 times the max-

mum marginal data range, the maximum number of mean shift

terations is j max = 100 , the cluster merging tolerance ε 2 = 10 ε 1 ,
nd minimum cluster size is s min = 50 . With the number of near-

st neighbours k = k NS , 1 from Eq. (6) , this is labelled as NNMS.

n alternative nearest neighbour median shift clustering method,

ased on replacing the sample mean of the k nearest neighbours

n Eq. (5) by a component-wise sample median and the choice of

 based on a grid search to minimise the silhouette index [35] is

abelled NNMS2. The kernel mean shift clustering with the plug-
n selector [6] is labelled as KMS. The ‘gold standard’ parametric

lustering method is the k -means, with a BIC method for selecting

he number for normal mixture components [13] is labelled KM.

e restrict ourselves to this small number of competing clustering

ethods as they are conveniently available as public R packages

n order to be able to compare computation times: nearest neigh-

our median shift in clues [35] , kernel mean shift in ks [12] and

 -means in mclust [14] . 

The d -dimensional four-crescent density is 1 
4 Cres d ([0.1 1 d−2 ,

,0], 
√ 

2 , 0.05, 0.2, 1, 1) + 1 
4 Cres d ([–0.1 1 d−2 , 1, –0.5], 

√ 

2 , 0.05, 0.2,

, 0) + 1 
4 Cres d ([ 0 d−2 , 1, –1], 0.5, 0.05, 0.4, 1, 0) + 1 

4 Cres d ([–0.1 1 d−2 ,

.5, –1.25], 0.5, 0.05, 0.4, 1, 1), where X ∼ Cres d ( μ, r , α1 , α2 , α3 , s )

s a crescent distributed random variable with components 

X 1 = μ1 + rR cos (2 π
1 ) 

X 2 = μ2 + rR sin (2 π
1 ) cos (2 π
2 ) 

X 3 = μ3 + rR sin (2 π
1 ) sin (2 π
2 ) 

. . . 

 d−1 = μd−1 + rR sin (2 π
1 ) · · · sin (2 π
d−2 ) cos (π
d−1 ) 

X d = μd + (−1) s rR sin (2 π
1 ) · · · sin (2 π
d−2 ) sin (π
d−1 , 

or d ≥ 2, which generalises the bivariate version [6] . Here R ∼
nif [1 − α1 , 1 + α1 ] , 
 j ∼ Beta (2 , 2) , j = 1 , . . . , d − 1 . The X j are re-

tricted so that 
j ≤ α3 π . If s 
 = 0, they are further restricted,

 X j | ≤ α2 | X d | , j = 1 , . . . , d − 2 . Fig. 3 displays the scatter plots of

 = 10 0 0 samples for d = 2 , 3 , 4 , 5 . There are four crescent saddle-

haped clusters, with the two smaller clusters in the lower right

osing particular difficulty to separate cleanly. 

We examine 100 trials of n = 10 0 0 random samples. Table 1

hows the numerical performance measures of the clustering

ethods for the different dimensions. Values of the Adjusted Rand

ndex (ARI) [20] and the normalised mutual information (NMI)

31] close to one indicate highly matched cluster labellings, and

alues close to (and less than for the ARI) zero indicate mis-

atched cluster labellings. The ARI and NMI values indicate that

ernel mean shift KMS clustering is preferred for d = 2 , whereas

he nearest neighbour clusterings NNMS and NNMS2 are preferred
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Table 1 

4-crescent densities for d = 2 , 3 , 4 , 5 , for size n = 10 0 0 . Clustering perfor- 

mance measures: Adjusted Rand Index (ARI), normalised mutual information 

(NMI), and relative computation times (Time). The optimal values are in bold. 

The clustering methods are the nearest neighbour mean shift with normal 

scale choice NNMS, the nearest neighbour median shift with Silhouette in- 

dex choice NNMS2, the kernel mean shift KMS, and the k -means KM. 

Clustering method 

d NNMS NNMS2 KMS KM 

2 0.02 ± 0.03 0.53 ± 0.15 0.78 ± 0.04 0.45 ± 0.03 

3 0.56 ± 0.07 0.80 ± 0.19 0.78 ± 0.05 0.45 ± 0.04 

ARI 4 0.92 ± 0.02 0.89 ± 0.14 0.76 ± 0.05 0.52 ± 0.04 

5 0.99 ± 0.01 0.87 ± 0.14 0.70 ± 0.09 0.62 ± 0.06 

2 0.19 ± 0.04 0.74 ± 0.10 0.85 ± 0.03 0.74 ± 0.02 

3 0.64 ± 0.04 0.89 ± 0.12 0.85 ± 0.03 0.75 ± 0.01 

NMI 4 0.90 ± 0.02 0.95 ± 0.07 0.85 ± 0.03 0.77 ± 0.02 

5 0.98 ± 0.01 0.94 ± 0.07 0.83 ± 0.03 0.79 ± 0.02 

2 1.00 ± 0.32 0.33 ± 0.11 0.36 ± 0.04 0.52 ± 0.05 

Time 3 0.67 ± 0.15 0.40 ± 0.15 0.57 ± 0.05 0.81 ± 0.09 

4 0.38 ± 0.06 0.43 ± 0.14 1.19 ± 0.05 0.89 ± 0.08 

5 0.43 ± 0.10 0.44 ± 0.16 2.66 ± 0.07 1.01 ± 0.11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) True clusters (6 clusters) (b) NNMS (6 clusters)
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(c) NNMS2 (2 clusters) (d) KMS (9 clusters)

elevn

●

●

●
●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●
●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●● ●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

aspect

●
●

●
●

● ●●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●●

●

●●●

●

●

●

●

●●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●
●
●

●

●
●

●
● ●

●●

●

●
●●

●

●

●

●

●

●
●

●
●●

●
●●●

●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●

● ●

●

●
●

● ●● ●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●
●●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
●

● ●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●
●● ●

●
●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●● ●

●

●

●

●●●

●

●

● ●

●●

●

●
● ●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●● ●

●

● ●●

●

●

●

●

● ●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●●

●●

●

●
● ●

●

●

●

●

●

●
●

●
● ●

●
●●●
●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●

●●

●

●
●

● ●●●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●● ●

●
● ●

●

●

●

●●

●

●

●

●
●

●
●●

●

● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●●

●
● ● ●

●
●

●

●●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●

● ●●

●

●

●●

●●

●

●
● ●

●

●

slope

●

● ●●●

●

●
●

●

●

● ●

● ●
●
●

●

●

●
●

●●●

●

●
●

●
●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●
●

●

●● ●

●

●
● ●●

●

●

●

●
●●

●

●●●
●

●
●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●●

●

●● ●●
●

●

● ●●

●●
●

●

●

●

●

●●●● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●
●

●

●

●

●●

●

●

●
●

●● ●

●

●

●
●● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●●
●●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●● ●● ●

●

●
●●

●
●

●●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●
●●

●●

●
● ●●

●

●● ●●

● ●
●●

●
● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

● ●

●●● ●

●

●
●

●

●

● ●

●●
●

●
●

●

●
●

●● ●

●

●
●

●
●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●
●

●

●● ●

●

●
●● ●

●

●

●

●
●●

●

● ●●
●

●
●

●

●

●
●

●

●
●
●

●

●●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●● ●●
●

●

● ●●

●●
●

●

●

●

●

●● ● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

● ●

●

●

●
●

● ●●

●

●

●
● ●●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●
● ●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●● ● ●

●

●
● ●

●
●

● ●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●
● ●

● ●

●
●●●

●

● ● ●●

●●
● ●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●●● ●

●

●
●

●

●

●●

●●
●

●
●

●

●
●

● ● ●

●

●
●

●
●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●
●

●

●●●

●

●
●● ●

●

●

●

●
●●

●

●●●
●

●
●

●

●

●
●

●

●
●
●

●

● ●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●●

●

●● ●●
●

●

● ●●

● ●
●

●

●

●

●

●● ● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●
●

● ●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●

●

● ●
●●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●● ●●

●

●
● ●

●
●

●●

●
●

●

●
●

●

●
●
●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●
●●

●●

●
●● ●

●

●● ●●

●●
● ●

●
●●

●
●

●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●

hdist_
water

●
● ●●●

●

●
●

●

●●
●

●
●
●

● ● ●

●

●

●●

●

●

●●

●
●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

● ●

●

●
●●● ●

●
●●

●
●

●

●
●

●

●
● ● ●

●
●●

●

●●

●

●●

●
●

●
●●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●
●

●

●
●

●

●
●

●
●

● ●●

●

●

●

●

●

●
● ●
●

●
●

●

●●

●
●

● ●●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●● ●

●
●

●

●

●
●

●
●

●

●
●

●
● ●●

●

●

●

●

●

●

● ●

●

●
●● ●●

●
●

●
●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●●
●

●
●
●●
●● ●
●

●

●

●

● ● ●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●
●

●

●●

●

●●
● ●●

●

●

●

●

●●

●●●
●

●
●

●

●
●

●

●● ●●
●

●
●

●

●

●

●

●

●● ●
●●● ●

●

●
●

●

●●
●

●
●

●

●●●

●

●

●●

●

●

●●

●
●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●
● ●● ●

●
● ●

●
●

●

●
●

●

●
● ●●

●
● ●

●

●●

●

●●

●
●

●
● ●

●

●

●● ●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●
● ●

●
●

●
●

●

●
●

●
●

●●●

●

●

●

●

●

●
● ●

●

●
●
●

●●

●
●

●●●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
● ●●

●
●

●

●

●
●

●
●

●

●
●

●
●●●

●

●

●

●

●

●

●●

●

●
●● ● ●

●
●

●
●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●●
●

●
●

●●
● ● ●

●
●

●

●

●● ●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

● ●

●

●● ●●●

●

●

●

●

●●

●● ●
●

●
●

●

●
●

●

●●● ●
●

●
●

●

●

●

●

●

●● ●
●●● ●

●

●
●

●

●●
●

●
●

●

● ●●

●

●

● ●

●

●

●●

●
●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

● ●

●

●
●●●●

●
●●

●
●

●

●
●

●

●
●● ●

●
● ●

●

●●

●

● ●

●
●
●
● ●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

● ●
●

●

●
●

●

●
●

●
●
● ●●

●

●

●

●

●

●
●●
●

●
●
●

●●

●
●

● ● ●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●●●

●
●

●

●

●
●
●

●
●

●
●

●
●●●
●

●

●

●

●

●

●●

●

●
● ●●●
●

●
●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

● ●
●

●
●

●●
● ●●

●
●

●

●

●● ●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●
●

●

●●

●

● ●
●● ●

●

●

●

●

●●

●● ●
●

●
●

●

●
●

●

●● ●●
●

●
●
●

●

●

●

●

● ● ●
●●●
●

●

●
●

●

●●
●

●
●

●

●● ●

●

●

●●

●

●

●●

●
●

● ●
●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●
●●●●

●
●●

●
●

●

●
●

●

●
●● ●
●
●●

●

●●

●

●●

●
●

●
●●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●●

●
●

●
●

●

●
●

●
●
● ●●

●

●

●

●

●

●
●●

●

●
●

●

●●

●
●

● ●●

●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●●

●
●

●

●

●
●

●
●

●

●
●

●
●● ●

●

●

●

●

●

●

●●

●

●
●●●●

●
●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●
●

●
●

●●
●●●

●
●

●

●

●● ●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●●

●

●●
●●●

●

●

●

●

● ●

●●●
●

●
●

●

●
●

●

● ●● ●
●

●
●

●

●

●

●

●

●●

vdist_
water

●

●

●
●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●
● ●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●
●

●

●
●●●

● ●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●●
●
●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

● ●

● ●

●

●

●

●

●
●●

●
●

●

●

● ●

●

●
●

●● ●

●

●
●

●
●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●●

●
●

●

●●●
●

●

●

●

●

●

●
●

●

●
●
●

●

●
● ●

●●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

● ●
●

● ●

●

●
●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●●●

●●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●●
●
●

●

●

●

●

●
●●

●

●
●

●
●

● ●

●

●
●

●
●
●

●
●

●
●

●

●

●

● ●

●
●
●

●

●

●

●

●
●●

● ●

●●

●

●

●

●

●
●●

●
●

●

●

●●

●

●
●
● ●●

●

●
●

●
●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●●

●
●

●

● ●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

● ●
●

● ●

●

●
●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●
●

●

●
●●●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●
● ●

●●

●●

●

●

●

●

●
●●

●
●

●

●

●●

●

●
●
●●●

●

●
●

●
●

●

●●

● ●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

● ●

●

●

●

● ●

●
●

●

●●●
●

●

●

●

●

●

●
●

●

●
●
●

●

●
● ●

● ●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●●

● ●

●

●
●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●
● ●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●
●● ●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●
●
●

●

●
●
●●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●
●●

●
●

●

●

●●

●

●
●

●●●

●

●
●

●
●

●

●●

● ●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●

● ●

●
●

●

● ●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
● ●

●●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●●
●

● ●

●

●
●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●
●

●

●

● ●

●

●
● ●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●
●

●

●
●●●

●●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●
●

●
●
●

●
●

●
●

●

●

●

● ●

●
●
●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●
●●

●
●

●

●

●●

●

●
●

●●●

●

●
●

●
●

●

●●

● ●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

● ●

●

●

●●

●

●

●

● ●

●
●

●

● ●●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
● ●

●●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●
●

● hill_
9am

elevn

●

●

●
●

● ●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●
●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●
●

● ●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

aspect

●
●

●
●

● ●●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●
● ●●

●

●●●

●

●

●

●

●●
●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●
●

●
● ●

●●

●

●
●●

●

●

●

●

●

●
●

●
●●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●

● ●

●

●
●

● ●● ●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●
●●

●

●

●

● ●

●

●

●

●
●

●
●●

●

●●● ●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●● ●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

● ●

●

●●
●

●

●

●

●● ●

●

●

●

●●

●

●

● ●

●●

●

●
●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●● ●

●

● ●●

●

●

●

●

● ●
●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●●

●●

●

●
● ●

●

●

●

●

●

●
●

●
● ●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●

●●

●

●
●

● ●●●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●● ●

●
● ●

●

●

●

●●

●

●

●

●
●

●
●●

●

● ● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●●

● ● ●
●

●

●

●

●●
●

●

●

●

●

●

●
●
●

●●

●

●●
●

●

●

●

●●●

●

●

●

●●

●

●

●●

●●

●

●
●

●

●

slope

●

● ●●●

●

●
●

●

●

● ●

● ●
●
●

●

●

●
●

●●●
●
●

●
●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●
●

●

●● ●

●

●
● ●● ●

●

●
●●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●● ●● ●●
●

●

● ●●

●●
●

●

●

●

●

●●●● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●
●

●

●

●●

●

●

●
●

●● ●

●

●

●
●● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●●
●●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●● ●● ●

●

●
●●

●
●

●●

●
●

●

●
●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●
●●

●●

●
● ●●

●● ●●

● ●
●●

●
● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●●● ●

●

●
●

●

●

● ●

●●
●

●
●

●

●
●

●● ●
●

●

●
●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●
●

●

●● ●

●

●
●● ●●

●

●
●●

●

● ●
●

●
●

●

●

●
●

●

●
●
●

●

●●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●● ●● ●●
●

●

● ●●

●●
●

●

●

●

●

●● ● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

● ●

●

●

●
●

● ●●

●

●

●
● ●●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●●
● ●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●●● ● ●

●

●
● ●

●
●

● ●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
● ●

● ●

●
●●●

● ● ●●

●●
● ●

●
●●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

● ●

●●● ●

●

●
●

●

●

●●

●●
●

●
●

●

●
●

● ● ●
●

●

●
●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
● ●

●
●

●

●●●

●

●
●● ●●

●

●
●●

●

●●
●

●
●

●

●

●
●

●

●
●
●

●

● ●

●
●

●

●
●

●

●

●

●

● ●

●
●

●

●●●● ●●
●

●

● ●●

● ●
●

●

●

●

●

●● ● ●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●●

●

●

●
●

● ●●

●

●

●
●●●

●
●

●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●●

●

● ●
●●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

●●● ●●

●

●
● ●

●
●

●●

●
●

●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●●

●
●● ●

●● ●●

●●
● ●

●
●●

●
●

●

●

●

●

●
●
●

●

●
●

●

●●

●

hdist_
water

●
● ●●●

●

●
●

●

●●
●

●
●
●

● ● ●

●

●

●●

●

●●

●
●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

● ●

●

●
●●● ●

●
●●

●
● ●
●

●

●
● ● ●

●

●

●

●●

●

●●

●
●

●
●●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●
●

●

●
●

●

●
●

●
●

● ●●

●

●

●

●

●

●
● ●
●

●
●

●

●●

●
●

● ●●

●
●
●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●● ●

●
●

●

●

●
●

●
●

●

●
●

●
● ●●

●

●

●●

●

● ●
●
●● ●●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●

●●
●

●
●
●●
●● ●
●

●

●

●

● ● ●

●

●●

●

●
●

●

● ●

●

●

●

●●
●

●

●

●●

●

●
●
●

●

●●

●

●●
● ●●

●

●

●

●●

●●●
●

●
●

●

●
●●● ●●

●

●
●

●

●

●

●

●● ●
●●● ●

●

●
●

●

●●
●

●
●

●

●●●

●

●

●●

●

●●

●
●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●
● ●● ●

●
● ●

●
●●

●

●

●
● ●●

●

●

●

●●

●

●●

●
●

●
● ●

●

●

●● ●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●
● ●

●
●

●
●

●

●
●

●
●

●●●

●

●

●

●

●

●
● ●

●

●
●
●

●●

●
●

●●●

●
●
●

●
●

●

●●

●
●

●

●

●

●

●

●
●
●

●
● ●●

●
●

●

●

●
●

●
●

●

●
●

●
●●●

●

●

● ●

●

●●
●

●● ● ●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●●
●

●
●

●●
● ● ●

●
●

●

●

●● ●

●

● ●

●

●
●

●

●●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●

● ●

●

●● ●●●

●

●

●

●●

●● ●
●

●
●

●

●
● ●●● ●

●

●
●

●

●

●

●

●● ●
●●● ●

●

●
●

●

●●
●

●
●

●

● ●●

●

●

● ●

●

●●

●
●

●●
●

●

●

●

●

●●●
●

●

●

●

●

●

● ●

●

●
●●●●

●
●●

●
●●

●

●

●
●● ●

●

●

●

●●

●

● ●

●
●
●
● ●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

● ●
●

●

●
●

●

●
●

●
●
● ●●

●

●

●

●

●

●
●●
●

●
●
●

●●

●
●

● ● ●

●
●
●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●
●
●●●

●
●

●

●

●
●
●

●
●

●
●

●
●●●
●

●

●●

●

●●
●
● ●●●
●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

● ●
●

●
●

●●
● ●●

●
●

●

●

●● ●

●

●●

●

●
●

●

● ●

●

●

●

● ●
●

●

●

●●

●

●
●
●

●

●●

●

● ●
●● ●

●

●

●

●●

●● ●
●

●
●

●

●
● ●● ●●

●

●
●
●

●

●

●

● ● ●
●●●
●

●

●
●

●

●●
●

●
●

●

●● ●

●

●

●●

●

●●

●
●

● ●
●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●
●●●●

●
●●

●
●●

●

●

●
●● ●
●

●

●

●●

●

●●

●
●

●
●●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●●

●
●

●
●

●

●
●

●
●
● ●●

●

●

●

●

●

●
●●

●

●
●

●

●●

●
●

● ●●

●
●
●
●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●●●

●
●

●

●

●
●

●
●

●

●
●

●
●● ●

●

●

●●

●

●●
●

●●●●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●●
●

●
●

●●
●●●

●
●

●

●

●● ●

●

●●

●

●
●

●

●●

●

●

●

●●
●

●

●

● ●

●

●
●

●

●

●●

●

●●
●●●

●

●

●

● ●

●●●
●

●
●

●

●
●● ●● ●
●

●
●

●

●

●

●

●●

vdist_
water

●

●

●
●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●
● ●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●
●

●

●
●●●

● ●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●●
●
●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

● ●

● ●

●

●

●

●
●●

●
●

●

●

● ●

●

●
●

●● ●

●

●
●

●
●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●●

●
●

●

●●●
●

●

●

●

●

●

●

●
●
●

●

●
● ●

●●

●
●

● ●
●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●
●

● ●

●

●
●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●

●

●
●●●

●●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●●
●
●

●

●

●

●

●
●●

●

●
●

●
●

● ●

●

●
●

●
●
●

●
●

●
●

●

●

●

● ●

●
●
●

●

●

●

●

●
●●

● ●

●●

●

●

●

●
●●

●
●

●

●

●●

●

●
●
● ●●

●

●
●

●
●

●

●●

●●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●●

●
●

●

● ●●
●

●

●

●

●

●

●

●
●

●
●

●
●●

●●

●
●

●●
●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●
●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●
●●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●
●

●

●
●●●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●
● ●

●●

●●

●

●

●

●
●●

●
●

●

●

●●

●

●
●
●●●

●

●
●

●
●

●

●●

● ●

●

●

●
●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

● ●

●

●

●

● ●

●
●

●

●●●
●

●

●

●

●

●

●

●
●
●

●

●
● ●

● ●

●
●

●●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●
●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

● ●

●

●
● ●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●●

●

●
●

●

●

●
●● ●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●
●
●

●
●
●
●

●

●
●
●●

●
●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●
●●

●
●

●

●

●●

●

●
●

●●●

●

●
●

●
●

●

●●

● ●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●

● ●

●
●

●

● ●●
●

●

●

●

●

●

●

●
●

●
●

●
● ●

●●

●
●

● ●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●
●

● ●

●

●
●

● ●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

● ●

●

●
● ●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●

●

●●

●

●●

●

●
●
●

●

●
●●●

●●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●
●

●
●
●

●
●

●
●

●

●
●

● ●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●●

●

●
●

●
●
●

●
●

●
●

●

●

●

● ●

●
●
●

●

●

●

●

●
●●

●●

●●

●

●

●

●
●●

●
●

●

●

●●

●

●
●

●●●

●

●
●

●
●

●

●●

● ●

●

●

●
●
●

●

●
●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

● ●

●

●

●●

●

●

●

● ●

●
●

●

● ●●
●

●

●

●

●

●

●

●
●

●
●

●
● ●

●●

●
●

● ●
●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

● hill_
9am

(e) KM (15 clusters)
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Fig. 4. Vegetation cover type training data ( n = 300 subsets) for the Comanche Peak 

wilderness area. The six variables are: elevation, azimuth aspect, slope, horizontal 

and vertical distances to water features, and hill shade index at 9 am. (a) Six ‘true’ 

clusters corresponding to the six species. (b) NNMS clusters. (c) NNMS2 clusters. 

(d) KMS clusters. (e) KM clusters. 

Table 2 

Vegetation cover type data for the Comanche 

Peak wilderness area. Clustering performance 

measures: Adjusted Rand Index (ARI), normalised 

mutual information (NMI) and relative computa- 

tion times (Time). The optimal values are in bold. 

Clustering method 

NNMS NNMS2 KMS KM 

ARI 0.293 0.222 0.169 0.029 

NMI 0.397 0.429 0.268 0.079 

Time 1.0 0 0 1.103 4.287 0.188 

o  

o  

t  

K  

s  

a  

t
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a  
for d ≥ 3, confirming an analogous result for density estimation

[33, Table 3] . 

As the execution times are highly dependent on the system

utilised, we normalise them by the bivariate mean NNMS exe-

cution time in Table 1 . As the dimension d increases, the times

for the NNMS and NNMS2 decrease or remain stable, whereas

the times for the kernel mean shift KMS and the k -means KM

increase. For d = 4 , 5 , the NNMS is the most efficient, indicating

that the grid-based search of the number of nearest neighbours

for the NNMS2 and of the number of mixture components for

the KM, and the dense nature of the kernel mean shift KMS

leads to computational bottlenecks. From this simulation study,

the NNMS efficiently computes the most accurate clusterings for

higher dimensions. 

4.2. Vegetation cover data 

An experimental data set which we consider is the vegeta-

tion cover in the Roosevelt National Forest, USA, available as

covertype from the UCI Machine Learning repository http://

archive.ics.uci.edu/ml and collected by Blackard and Dean [2] . We

focus on the Comanche Peak wilderness area, with these six vari-

ables: elevation (m), azimuth aspect from true north (degrees),

slope (degrees), horizontal and vertical distances to the nearest

surface water feature (m), and a relative measure of incident sun-

light (hillshade index) at 9 am on the summer solstice (0 to 255).

The clusters correspond to the six different types of vegetation

cover established by the US Forest Service, as illustrated in the

scatter plot matrix in Fig. 4 (a). The frequency counts of the n =
4771 observations are spruce/fir (698), lodgepole pine (706), pon-

derosa pine (644), aspen (976), Douglas fir (722) and krummholz

(1025). 

We compute the nearest neighbour mean shift NNMS with

k NS , 1 = 226 , the nearest neighbour median shift NNMS2 with k

that minimises the Silhouette index, the kernel mean shift KMS

with the plug-in selector, and the k -means KM with the BIC selec-

tor. For the mean shift methods, the tuning parameters are ε 1 =
7 . 74 , j max = 100 , ε 2 = 10 ε 1 = 77 . 4 , s min = 48 . The results of these

clusterings are given in Fig. 4 (b–e). Visually the true clusters strat-

ified with respect to the elevation height are reproduced in the

NNMS clusters, but not in the NNMS2, KMS or KM clusters. 

In Table 2 are the ARI, NMI and relative computation times for

the different clustering methods. The NNMS and NNMS2 perform

the best overall in terms of the ARI and NMI. The poor perfor-

mance of the normal mixture clustering KM echoes the inadequacy
f the normal mixture based linear discriminant analysis carried

ut by Blackard and Dean [2] . In terms of the relative computation

imes (divided by the NNMS computation time), the k -means

M is the most efficient but by far the lease accurate. The mean

hift methods are uniformly preferred as they produce the most

ccurate clusterings, with the NNMS requiring less computation

ime than the NNMS2 or KMS. 

.3. Image segmentation 

A recent resurgence in interest in the mean shift is due to its

pplication to image segmentation where an image is transformed

http://archive.ics.uci.edu/ml
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(a) RGB (b) Spatial-range

(c) User #1107 segmentation (d) NNMS segmentation

(e) Watershed segmentation (f) Canny segmentation

Fig. 5. Colour image segmentation. (a) RGB image 481 × 321 pixels. (b) Scatter 

plot of n = 154401 transformed (x, y, L ∗, u ∗, v ∗) spatial-range values. (c) User #1107 

segmentation. (d) NNMS segmentation. (e) Watershed segmentation. (f) Canny seg- 

mentation. 
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Table 3 

Colour image segmentation. Performance measures: Pratt’s figure of merit 

(FOM) and mean squared error distance (MSD). The optimal values are in 

bold. 

Segmentation method 

NNMS Canny Watershed 

FOM 0.967 0.990 0.961 

MSD 0.055 0.148 0.063 
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nto a colour space in which clusters correspond to segmented re-

ions in the original image. The 3-dimensional L ∗u ∗v ∗ colour space

29, Eqs. 3.5–8a–f] is a common choice. Since an image is a 2-

imensional array of pixels, let ( x , y ) be the row and column index

f a pixel. The spatial and colour (range) information of a pixel

an be concatenated into a 5-dimensional vector (x, y, L ∗, u ∗, v ∗) in
he joint spatial-range domain. An image segmentation algorithm

ased on the kernel mean shift was introduced in [9] which we

dapt to the NNMS. 

The Berkeley Segmentation Dataset and Benchmark is an image

atabase for testing image segmentation algorithms http://www.

ecs.berkeley.edu/Research/Projects/CS/vision/bsds . We take image 

7 from the colour test set. In Fig. 5 (a) is the 481 × 321 pixels RGB

mage, and 5 (b) the n = 154401 five-dimensional (x, y, L ∗, u ∗, v ∗)
patial-range coordinates. Fig. 5 (c) is the segmentation made by

 human expert (User #1107) from the Berkeley project. Due to

he computational limitations of the NNMS2, KMS and KM meth-

ds implemented in their R packages to treat data sets of size n ∼
0 5 , we focus on the NNMS with k NS , 1 = 2463 , ε 1 = 0 . 005 , j max =
00 , ε 2 = 0 . 05 , s min = 0 . 01 n = 1544 , whose results are in Fig. 5 (d).

or comparison to standard image analysis methods, in Fig. 5 (e–

), we perform the watershed [34] and Canny [3] segmentations

n the ImageJ and ImageMagick software respectively, after an

nitial Gaussian blurring of 4 pixels on a grey scale version of the

mage. The human expert delimits the blue sky from brown rock

ormations and the sky from the green tree leaves. The automatic

NMS image segmentation performs visually similarly to this: it

ives less well-defined segmentations in the tree roots, shrubs and

oil, though it reveals a more detailed segmentation as the sky and

ock formations. Of the two standard image analysis methods, the

atershed segmentation produces more segments so the overall

isual impression is fragmented and quite different to the human

xpert and NNMS segmentations. The Canny segmentation is more

imilar, but it is not always able to draw the complete edges, thus

eaving a visual impression of an incomplete segmentation. 
In Table 3 are the quantitative measures of the agreement be-

ween the human expert and computer edge detections: the fig-

re of merit (FOM) [29, Eq. (15.5–1)] and the mean squared er-

or distance (MSD) [28] . The FOM is calculated with the tuning

onstant = 0 . 1 , and the FOM values close to 1 indicate a close

greement between the two edge sets. Values of the MSD close

o 0 indicate close agreement. The three computer segmentations

erform similarly: in terms of the FOM, the Canny is the closest,

hough in terms of the MSD, the NNMS agrees most closely with

he human expert segmentation. 

. Conclusion 

We have introduced a framework for the mathematical analy-

is of nearest neighbour estimators of the density function and its

erivatives, allowing us to exhibit an automatic, single pass, nor-

al scale selector for the optimal number of nearest neighbours.

e apply these results for the density gradient to the mean shift

or unsupervised learning. Our proposed automatic nearest neigh-

our mean shift clustering NNMS gave good empirical performance

or discovering the number, location and shape of non-ellipsoidal

lusters for multivariate data analysis and image segmentation. In

he future, we anticipate to improve on this performance by de-

eloping more advanced data-based selectors, analogous to the

mprovements made with data-based bandwidth selectors for the

ernel estimators. We also envisage to implement the NNMS in a

istributed computing environment so that it becomes a readily

vailable tool for Big Data Clustering. 
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ppendix A. Proof 

Suppose that the following conditions hold: 

(A1) f is a density function with all its partial derivatives up to

order r + 2 are bounded, continuous and square integrable. 

(A2) k = k n is a sequence of the number of the nearest neigh-

bours such that k → ∞ , k / n → const as n → ∞ . 

(A3) K is a symmetric d -variate density such that∫ 
R d 

x x T K ( x ) d x = m 2 (K ) I d , and all its r th order partial

derivatives are bounded, continuous and square integrable

such that R (D 

�r K) = 

∫ 
R d 

D 

�r K ( x ) D 

�r K ( x ) T d x . 

The assumptions (A1)–(A3) do not form a minimal set of as-

umptions, but they serve as a useful starting point. 

roof of Theorem 1. Substituting H ( x ) = δ(k ) ( x ) 
2 I d for

 in AMISE [ D 

�r ˜ f (·; H )] = n −1 | H | −1 / 2 tr ((H 

−1 ) �r R (D 

�r K)) +
1 
4 (−1) r m 2 (K) 2 ψ 

T 
2 r+4 ( vec I d r � vec H 

�2 ) from [7, Theorem 2] , we

btain 

MISE [ D 

�r ˆ f ( x ; k )] 

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds
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= AMISE [ D 

�r ˜ f (·; δ(k ) ( x ) 
2 I d )] 

= n 

−1 tr (R (D 

�r K)) δ(k ) ( x ) 
−d−2 r 

+ 

1 

4 

(−1) r m 2 (K) 2 δ(k ) ( x ) 
4 ψ 

T 
2 r+4 ( vec I d ) 

�(r+2) 

following similar reasoning to [7, Lemma 3(ii)] and [30, Theo-

rem 1(iv)] . Taking its expected value yields our proposed optimal-

ity criterion 

A r ( x ; k ) 

= E { AMISE [ D 

�r ˆ f ( x ; k )] } 
= n 

−1 tr (R (D 

�r K))[ E δ(k ) ( x ) 
−d−2 r ] 

+ (−1) r 
m 2 (K) 2 

4 

ψ 

T 
2 r+4 ( vec I d ) 

�(r+2) [ E δ(k ) ( x ) 
4 ] 

= tr (R (D 

�r K))[ v 0 f ( x )] (d+2 r) /d n 

2 r/d k −(d+2 r) /d 

+ (−1) r 
1 

4 

m 2 (K) 2 ψ 

T 
2 r+4 ( vec I �(r+2) 

d 
)[ v 0 f ( x )] −4 /d n 

−4 /d k 4 /d 

using E [ δ(k ) ( x ) 
α] = [ k/ (n v 0 f ( x )] α/d { 1 + o(1) } from [18, Eq. (2.2)] .

The derivative of this with respect to k is 

∂ 

∂k 
A r ( x ; k ) 

= −((d + 2 r) /d) tr (R (D 

�r K))[ v 0 f ( x )] (d+2 r) /d n 

2 r/d k −2 r/d−2 

+ (−1) r 
1 

d 
m 2 (K) 2 ψ 

T 
2 r+4 ( vec I �(r+2) 

d 
)[ v 0 f ( x )] −4 /d n 

−4 /d k 4 /d−1 . 

Setting this derivative to zero, and noting that the exponent of

v 0 f ( x ) is (d + 2 r) /d + 4 /d = 1 + (2 r + 4) /d which is exactly the

same as that of k , the solution is 

k ∗A ,r ( x ) = 

[
(d + 2 r) tr (R (D 

�r K)) 

(−1) r m 2 (K) 2 ψ 

T 
2 r+4 ( vec I d ) �(r+2) 

]d / (d +2 r+4) 

× v 0 f ( x ) n 

(2 r+4) / (d+2 r+4) 

and k A ,r = 

∫ 
R d 

k ∗
A ,r 

( x ) d x follows immediately. 

For K = f = φ, as m 2 (φ) = 1 and tr (R (D 

�r φ)) =
2 −r (4 π) −d/ 2 

∏ r−1 
j=0 (d + 2 j) using [7, Lemma 3 and Corollary 7] ,

and ψ 

T 
2 r+4 ( vec I d ) 

�(r+2) = (−1) r+2 2 −r−2 (4 π) −d/ 2 
∏ r+1 

j=0 (d + 2 j) in

conjunction with [5, Eq. (7)] , the constant inside the brackets of

k A, r reduces to 

2 

−r (4 π) −d/ 2 
∏ r 

j=0 (d + 2 j) 

2 

−r−2 (4 π) −d/ 2 
∏ r+1 

j=0 (d + 2 j) 
= 

4 

d + 2 r + 2 

. 

�
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