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ABSTRACT

Markov traffic assignmenmodelsare attractve tools for representinghe day-to-dayevolu-
tion of traffic flows over roadnetworks. They aresimplerthanmicroscopic(‘car-following’)
simulationmodels,but incorporateconsiderabldlexibility in the mannerin which traveller
route choiceis relatedto pastexperienceandpre-tripinformation. In this paperwe describe
our own Markov traffic assignmenmodel,andits implementatiorin a new softwarepackage
MARTS (Markov Assignmentor RoadTraffic Systems)hatwe aredeveloping. We illustrate
the capabilitiesof MARTS for analyzingthe effectsof pre-tripinformationusinganexample
basedon theroadnetwork in aregion of the U.K. city of Leicester Simulationof this system
undervariousscenariosuggestghat provision of high quality pre-trip informationcanhave
unexpectedresultsif travellersreactin avery volatile fashion.

INTRODUCTION

Early equilibrium assignmenmodels(suchas Wardrops userequilibrium (1)) definedlink
flow patternsthat could be written as the solutionto somerelatively tractableoptimisation
problem.However, thesemodelshaddeficienciesvhich arenow widely recognisedIn partic-
ular, thelack of explicit representationf traveller learning(i.e. how atraveller's routechoice
dependsiponpastexperience)n equilibriumassignmeninodelsmakesthemvery crudetools
for assessinghe impactof sometypesof ITS on a network. See(2), (3) and(4) for further
commentsRecentdevelopmentsn traffic assignmenbave focusedcloselyon traveller learn-
ing asa (typically stochasticdynamicalprocessbut derivation of the macroscopigroperties
(e.g.link flows) of suchmodelsleadsto intractablemathematics As a result,simulationhas
becomea widely usedtool for learningaboutthe evolution of traffic flows in moderntraffic
assignmenmodels.

Modernassignmenimodelstypically fall into oneof two classeswithin day dynamicalmod-
els, or day-to-daydynamicalmodels. The former type of modelis usuallythe moredetailed,
andis oftendefinedata highly microscopidevel (e.g.‘car-following’ simulationmodels).The
latterclasscontainamary modelsthatcanusefullybedescribecasmesoscopidn thatday-to-
daytraveller learningis representeth a detailedfashion but the daily traffic assignmentloes
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not allow for within-trip decisionmaking. Thesemodelsinclude Cascettas (5) increasingly
popularMarkov chainassignmenmodels. (Seealso(6) and(7).) For investigationof mary

aspectf ITS (e.g.in-vehicleguidancesystems)t is naturalto employ within-day models.
However, at othertimes (wheninterestis in the effect of pre-trip information,for example),
both within-day andday-to-daymodelsare possibletools. In suchcircumstances is impor-

tantto recognisdhe additionalcompleity of within-day modelsis not anadvantagan itself.

Indeed,often a simpler ‘broad brush’ approachto modelling provides far more reliable re-

sultsthanan attemptto modeltoo muchintricatedetail. Furthermore gvenwith today’s fast
computerssimulationof the mediumor long-termevolution of traffic flow overevenamoder

atelysizednetwork canbecomputationallyinfeasiblefor within-daymodels but is potentially
manageabléor day-to-daymodels.

In this paperwe describethe developmentof a new softwaretool, MARTS, for implementing
day-to-daytraffic assignmenusingthe Markov chainframework of Cascettg5). We outline
somenew ideasfor markedly increasingthe simulationspeedof suchan assignmenprocess
with probitroutechoicemodel. This increaseckfficiency meanghatour softwarecanfeasibly
run long simulations,andhenceassesshe behaiour of a modelledtransportsystemover the
medium-term. This allows us to assesshe impactof pre-trip informationon a systemat a
numberof time frames.Ourwork is illustratedusingtheroadnetwork from aregion of the UK
city of Leicester

METHODOLOGY

MARKOV ASSIGNMENT MODELS

We develop a traffic assignmentnodelbasedon Cascetta (5) Markov chainframework as
follows. Consideithe evolution of link androuteflows on a network duringa particularobser
vationalperiod(e.g.morningpeak-hourjpverasequencef (week)daysLet x(¢) andy(¢) be
thevectorsof link androuteflows respectiely ondayt. Thesevectorsarerelatedby

x(t) = Ay(t)

whereA is the standardink-pathincidencematrix. Let k() = k(x(t)) bethe vectorof mea-
suredlink costsgeneratedy theflows ondayt, andthec(¢) bethe correspondingneasured
routecosts.

In our model, travellerson day ¢ arerandomlydivided into two classes.A proportiona of
thesetravellersare habitual while theremainderare selective The habitualtravellersusethe
routethatthey took on the previousday (i.e. day (¢ — 1)). Eachselectve traveller reconsiders
his/herroute choiceon day ¢t baseduponexperienceof travel costson the previous m days
(wherem canbeinterpretedaseffective memorylength). To represenheterogeneitamongst
selectve travellers,eachof themsamplesaroutefor dayt from the (conditional)routechoice
probability distribution 7 (¢), which is definedin termsof the measuredoute costsover the
previousm days.Thelink flow patternfor dayt is thengivenby

x(t) = ax(t — 1) + x(t) (1)

wherex(t) = Ay(t) is thenew vectorof link flows generatedy sampledoutechoice(y(¢))
of the selectve classof travellers.More specificallyif y;(¢) is asub-\ectorof y(¢) comprising
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only thoseroutescorrespondingdo the:th origin-destination{OD) pair, then
yi(t) ~ multinomial((1 — a)n;, 1) (2)

where(1 — a)n; is the number(assumedntegral) of selectve travellersfor the ith OD pair,
andr; is theroutechoiceprobability distribution for this OD pair alone.

Adjustmentgo memorylengthandform of 7 allow considerablédlexibility in therepresenta-
tion travellerlearning.Undervery generakonditionsthe concatenationf therouteflows over
m day periods,{(x(t — m + 1),...,x(t)) : t = m,m + 1,...}, forms an ergodic Markov
procesy5). The mathematicatheory of Markov processess well understoodsee(8), for
example),andcanhelp usto understandhe propertiesof this type of traffic assignmenimod-
el. For example,it is know that(underthe aforementionedeneralconditions)the assignment
proceswwill settledown to probabilisticequilibriumast becomedarge, with theroutechoices
describedy a stationaryprobability distribution 7*. Nonethelessa detailedunderstandingf
short-termand medium-termbehaiour of a Markov traffic assignmenprocessdefiesmath-
ematicalanalysisfor even modestlysizedapplications. We can, however, learnaboutsuch
behaiour by simulatingthe systema procedurehatis facilitatedby the Markov structureof
themodel.

In mostapplicationsto date,the conditionalroute choiceprobability distribution 7 hasbeen
definedimplicitly througha randomutility model. In sucha situationthe probability of a
traveller choosingrouter is givenby

=PV, =min{V;: s~r}) 3)

whereV; is the disutility of route s as perceved by the traveller in question,ands ~ r if
andonly if routesr ands servicethe sameOD pair. A popularapproachof this typeis to
uselogit routechoice(see(9), for instance)wherethe measuredlisutility (frequentlydefined
asa linear combinationof measuredoute costsover the previous m days)is perturbedby
additve Gumbelnoiseto give individual perceved disutilities. Theroutechoiceprobabilities
can be computedas particularratios of exponentiatedneasuredcosts(8). Nonethelessit
is well known that logit route choicessuffers from a lack of IIA (independencéo irrelevant
alternatve) property An alternatve method(withoutsuchllA problems)s probitroutechoice.
In a probit Markov assignmenmodelthevectorof measuredink disutilitieson dayt is given

by

Vi(t) =Y B-k(t—7) 4)
=1
whereg, ..., 3,, areweights. The vectorof perceivedroutedisutilities for a particulartrav-
ellerondayt is givenby
V(t) = A{V*(t) + €(t)} (5)

where A’ is the path-linkincidencematrix (i.e. the transposef A definedabove) ande(t) is
a vectorof uncorrelatechormalrandomvariables,ndependentf €(¢ + 7) for 7 # 0. Note
that the variancesof the componentf e may dependon the correspondingneasuredink
disutilities. If thisdependencis definedsothatvar(e;) o (V;*)? thenthestochasticomponent
of the perceved disutility is effectively operatingin a multiplicative manner:viz. V;* + ¢; =
V*(1 + n;) wheren;, is normally distributedwith varianceindependenof V;*. Thesevariances
canalsobeallowedto vary betweerdifferentgroups permittingselectve travellersatdayt to
bedividedinto low varianceandhigh variancegroups for example.
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While a probit implementationof Markov assignments attractve from a theoreticalstand-
point, thereare practicaldifficulties with this approach.The crux of the problemis thatthe
probabilitiesin equation3 cannotbe derived mathematicallyin closedform whenthe disu-
tilities aregiven by equationsd and5. In principle theseprobabilitiescanbe estimatedwith
anarbitrarydegreeof precisionusingsufficient mary Monte Carlo simulations.This process
requiresgeneratiorof therandomvectorse(s) (s =t —m,...,t — 1) (from equatiorb) to be
generatedrom the appropriatemultivariatenormaldistributionsto producea realizedset of
perceveddisutilities. A singletraveller is thenassignedo the routewith minimumdisutility
usingastandaraghortespathalgorithm.This processepeatedor mary iterationsfor eachOD
pair. For agivenOD pair, the proportionsof travellersselectingeachrouteprovidesestimates
of the correspondingoutechoiceprobabilities.

Accurateestimationof route choiceprobabilitiesby Monte Carlo simulationis computation-
ally intensve. If we wish to estimatea route choiceprobability whosetrue valueis 0.1, then
about100 simulatedroute choices(eachrequiringa shortestpathalgorithmto be employed)

arerequiredto be 95% confidentof keepingthe relative errorbelov 20%. Around 1500sim-

ulationsarerequiredfor 95% confidenceof obtaininga relative error of 5% or less. Now, for

mary intentsand purposeghe route choiceprobabilitiesare not of primary interestin them-
selves— they arerequiredonly to allow the evolution of a Markov assignmenprocesdo be

simulatedby samplingaccordingto equation2 from day-to-day Whenthis is the casethe

computationaburdencanbe reducedparticularlyin applicationsvherethe numberof selec-
tive travellersfor mary OD pairs(duringthetime periodof interest)is relatively small (tensof

trips, for perhaps)For suchOD pairsthereis no needto estimateheroutechoiceprobabilities
with precision,sinceall the travellersmay be assignedy selectingthe routewith minimum

simulatedperceved disutility. Not only doesthis cut down on the numberof Monte Carlo
iterationsrequired,it alsoproducesanassignmenpatternsampledrom the exactconditional
routechoicedistribution (ratherthansomeestimateof it). For anOD pair with heavry demand
we canstill make someuseof thisidea,using200(say)Monte Carloiterationsto performtwo

taskssimultaneously(i) assignmenbf thefirst 200travellers,and(ii) estimationof theroute
choiceprobabilitiesfor assignmenof theremainingtravellers.

DEVELOPMENT OF SOFTWARE

We arecurrentlydevelopingasoftwarepackageMARTS (Markov Assignmenfor RoadTraffic
Systems)to implementthe Markov assignmenprocesswith probit route choice described
above. This softwareis written in R, a high level statisticalfreevarelanguagehatis a close
relationto the state-of-the-artommercialsystem,S-Plus;see(10). R is availablefor (free)
downloadfrom the Websiteht t p: / / www. cran. r - pr oj ect . or g. Thechoiceof R as
thedevelopmentanguagevasguidedby anumbelissuesincludingits freeavailability andthe
easewith which samplingroutinescanbe constructedn this language Furthermoreasa sta-
tistical packageR providesanexcellentervironmentfor analysinghe simulationexperiments
conductedon Markov assignmenprocesses.A disadwantageof using R is that algorithms
written in this languagerun relatively slowly in comparisorto analogousalgorithmswritten
in lower level languagesuchasC or Fortran. This is a majorissuebecausef the needfor
large numbersof shortespathalgorithmsin orderto simulatethe evolution of our assignment
process.We have overcomethis problemto a greatextentby dynamicallyloadinginto R an
efficient shortespathalgorithmcodedin C. Examplesof MARTS outputare presentedn the
next sectionwherewe usethis packageo investigatessuesassociatedavith the provision of
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pre-tripinformation.

APPLICATION TO PRE-TRIP INFORMATION

Day-to-dayassignmeninodelscan be of considerablausefor the quantitatve study of the

macroscopieffectsof introducingpre-trip informationinto a network. The explicit manner
in which traveller learningandroute choicearerepresentedn our modelallows the impact
of pre-tripinformationto be examinedundera variety of assumptionsbouttravellers’ useof

suchinformation. For instancewe canassesgheimpactof pre-tripinformationunderdifferent
levelsof traveller inertiaby suitablyadjustinga (the proportionof travellersactinghabitually
oneachday). We canalsomodelthe effect of differentlevelsof quality in pre-tripinformation
by altering the covariancematrix of e. For example,in a systemwith high quality pre-trip
informationcanberepresentetly having makingthe elementf this matrix relative small(so
thatall travellershave aratheraccurat&knowledgeof pasttravel costs).

Weillustratetheuseof MARTS for studyingtheimpactof pre-tripinformationusinga portion
of theroadnetwork from the UK city of Leicester Specifically we will look at a subnetvork
designatedregion R’ for the purposef traffic managemenby LeicestershireCity Council.
This region lies to the south(andslightly east)of Leicestercity center An abstractiorof the
network in thisregionis givenin Figurel. In reality the network is orientatedsothatLondon
Road(a major arterial) runs south-eas{node5) to north-west(nodel). Thenodesl, 5, 10,
12,13, 14 aremajororiginsanddestination®f traffic flow —anOD matrix for this network is
givenin (12). Link costfunctionsfor this network werequadratilBBPRtype(13), calibratedoy
capacityandfree-flov speed.

LONDON ROAD (A6)

WATERLOO WAY

LANCASTER ROAD

Figurel: Abstractionof roadnetwork in region ‘R’ of the UK city of Leicester

We considerthe day-to-dayevolution of traffic flows over the network undera numberof
scenariosasoutlinedin Tablel. In thesescenariogve vary the assignmenparameters — o
(proportionof selectve travellers),m (memorylength)andthe covariancematrix of €. (With
regardto this covariancematrix, we assumdor simplicity a constanicoeficient of variation,
o/u, for all percevedlink costs.) The resultingsystemscanbe summarisedn termsof the
quality of pre-trip information (high if the link cost‘error’ is small, andlow if this ‘error’
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is large) andthe volatility of the travelling population. In the very volatile systemghat we
considerall travellers are selectve, and basetheir route choice on information abouttraffic
flows on the previous day alone. In the low volatility systemsmost(80%) of travellersare
habitualon eachday, andthosethatareselectve usetravel informationbaseduponthelast5
days. Moderatelyvolatile systemsombineeithershortmemorywith low selectvity, or long
memorywith 100%selectvity.

Scenario| description l—a o/p m
A Poorinformation,high volatility 100% 20% 1
B Goodinformation,high volatility 100% 1% 1
C Poorinformation,low volatility 20% 20% 5
D Goodinformation,low volatility 20% 1% 5
E Goodinformation,moderatevolatility | | 100% 1% 5
F Goodinformation,moderatevolatility Il | 20% 1% 1

Tablel: Simulationscenariogor investigatingthe effectsof pre-tripinformation. The param-
eterl — « is the proportionof selectie travellerson eachday; o/« denoteghe coeficient of
variationin percevedlink costsin the probitroutechoicemodel;andm is the effective length
of memoryin days.

Therearemary aspect®f thesimulationresultsthatwe couldlook atfor eachscenarioln the
interestof brevity we look only attotal travel coston network. This costis plottedday-by-day
for eachscenarian Figure2.
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Figure2: Total coston network day-by-dayfor six simulationscenariosThe legendidentifies
thescenario.

As onemight expect,the scenariowith relatively smallmeanandvariancein total cost— D,
E andF —all incorporatethe provision of high quality pre-tripinformationto travellers.When
theinformationis of poorquality (scenario$\ andC) themeancostis high, with highvariance
obsenedin thevolatile scenaridA. Interestinglytheworstnetwork performancégbothin terms
of meanandvarianceof total cost)occursunderscenaridB wherehigh quality informationis
provided. However, the travellersin this casearehighly volatile, reactingen masseto news
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aboutthe mostrecenttraffic flows only. As aresult,routesthatwerecheapon day¢ become
heavily overusedondayt + 1, resultingin congestioranddelays.This type of problemdoes
not occurif traveller inertiais high (cf. scenarioF) or if travellerstendto balanceout travel

informationfrom severaldays(cf. scenaricE).

In an extensionof this experimentwe considera situationin which road works significantly
reducethe capacityof a sggmentof LondonRoadfrom day¢ = 101 onwards. (The facility
to changenetwork link characteristicait userspecifiedtime-pointsis availablein the current
versionof MARTS.) We concentraten the scenariowith 80% of travellersactinghabitually
on eachdayi.e. scenarioLC, D andF only. In eachcasethe percentagef travellersacting
habituallyis cut to 50% on the day of the roadclosure,andthengraduallyfalls backto 20%
overthefollowing 4 days(in anattemptto morerealisticallyrepresenincreasedravellerreac-
tivity in thefaceof significantchangedo theroadsystem).Theresults(againin termsof total
coston network) aredisplayedin Figure3. As expected thetotal costincreasesignificantly
underall scenariosafter the introductionof the roadworks. In all caseshereis a spike in
the costplot whentheroadworksareintroduced.Whenhigh quality informationis provided
(scenarioD andF) the systemreaches new stochastieequilibriumvery swiftly. In the low
quality informationscenarioC, thereis evidenceof a somavhat slower movementtowardsa
new stationarystate.
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Figure 3: Total coston network day-by-dayfor threesimulationscenariosywhereroadworks
begin on LondonRoadon day 101. Thelegendidentifiesthe scenario.

CONCLUSIONS

In this paperwe have describeda new type of Markov traffic assignmeninodel. This modelis
implementedn a softwarepackageMARTS thatis currentlyunderdevelopment MARTS al-
lows considerabldlexibility in representinghe mannetin which travellersselectroutesbased
upon pastexperienceand pre-trip information. The capabilitiesof MARTS were illustrat-
edusingsimulationexperimentdo investigatenetwork operationundera variety of scenarios.
While werecognisehattheseaxperimentsareratheridealized(andthatour conclusionshould
hencebeinterpretedvith caution)it is interestingo notethatthe effect of high quality pre-trip



informationin highly volatile systemsnaynot be entirelybeneficial.

The useof efficient algorithmsandcodingin MARTS allows us to simulatethe evolution of
modestlysizenetworks over hundredsof days.Nonethelessprobit Markov assignments not
currentlyfeasiblefor large networksandlong simulationruns. We canperhapsnake progress
hereby usingregressiortechniqueso estimateroutechoiceprobabilitiesfor laterdaysbased
on simulatedassignmentiows on earlierdays.Our work in this areais ongoing.
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