Mach Learn (2017) 106:837-862 @ CrossMark
DOI 10.1007/510994-016-5622-4

Big Data: from collection to visualization

Mohammed Ghesmoune'! - Hanene Azzag! - Salima Benbernou? -

Mustapha Lebbah! . Tarn Duong! - Mourad Ouziri?

Received: 26 April 2016 / Accepted: 10 December 2016 / Published online: 11 January 2017
© The Author(s) 2017

Abstract Organisations are increasingly relying on Big Data to provide the opportunities to
discover correlations and patterns in data that would have previously remained hidden, and
to subsequently use this new information to increase the quality of their business activities.
In this paper we present a ‘story’ of Big Data from the initial data collection and to the
end visualization, passing by the data fusion, and the analysis and clustering tasks. For this,
we present a complete work flow on (a) how to represent the heterogeneous collected data
using the high performance RDF language, how to perform the fusion of the Big Data in
RDF by resolving the issue of entity disambiguity and how to query those data to provide
more relevant and complete knowledge and (b) as the data are received in data streams,
we propose batchStream, a Micro-Batching version of the growing neural gas approach,
which is capable of clustering data streams with a single pass over the data. The batchStream
algorithm allows us to discover clusters of arbitrary shapes without any assumptions on the

Editors: Nathalie Japkowicz and Stan Matwin.

B<I Mohammed Ghesmoune
mohammed.ghesmoune @lipn.univ-paris13.fr

Hanene Azzag
hanene.azzag @lipn.univ-paris13.fr

Salima Benbernou
salima.benbernou @parisdescartes.fr

Mustapha Lebbah
mustapha.lebbah @lipn.univ-paris13.fr

Tarn Duong
tarn.duong @lipn.univ-paris13.fr

Mourad Ouziri
mourad.ouziri @parisdescartes.fr

1 LIPN-UMR 7030 - CNRS, University of Paris 13, Sorbonne Paris City, 99, av. J-B Clément,
93430 Villetaneuse, France

LIPADE, University of Paris Descartes, Sorbonne Paris City, 45 rue des Saints Peres,
75270 Paris Cedex 06, France

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-016-5622-4&domain=pdf

838 Mach Learn (2017) 106:837-862

number of clusters. This Big Data work flow is implemented in the Spark platform and we
demonstrate it on synthetic and real data.

Keywords Data fusion - RDF - Semantic - Entity resolution - Big data - Map-Reduce -
Spark - Data stream clustering - Micro-Batch streaming - GNG - Topological structure -
Visualization

1 Introduction

The introduction of Big Data gives organisations the opportunity to discover correlations and
patterns in data that would have previously remained hidden. Moreover, these organisations
need to handle efficiently the volume of Big Data coming from not only proprietary data
sources but also open data from heterogeneous sources provided by other organisations
including government and non-government sources. Hence, the fusion of such data is required
to extract appropriate multi sourced information and knowledge, and to infer more relevant
data in order to analyze the more complete data sets and to visualize the result. This is the
story of the experience we have on Big Data, via a real application from insurance, that we
would like to narrate in this paper.

Many challenges arising from the Big Data fusion include how to integrate data from
multiple and heterogeneous data sources (Dong and Srivastava 2015), how to identify the
meaning between entities from different sources (Wache et al. 2001), how to handle the
inconsistent naming styles in different data sources, and how to resolve the conflicting data
types for the same entity. The Linked Data paradigm allows us to describe a recommended
best practice for displaying, sharing and connecting data, information and knowledge on the
Semantic Web using URISs, the RDF model of data, and ontologies. RDF' is a conceptual
description of information modeling that is implemented in Web resources, using a variety
of syntax notations and data serialization formats (XML, n-triple, turtle). Consequently, we
create collections of interrelated data sets on the Web. Moreover, to access such data, the
SPARQL can draw inferences using vocabularies based on ontologies. Existing works do
not handle the aforementioned issues for Big Data. In the first instance, this paper attempts
to propose a MapReduce based approach which allows the fusion of Big RDF Data to infer
and discover more hidden and relevant data. Once the data are collected, discovered through
semantic inferences and then integrated, they are now considered as a data stream, and are
ready to be analysed in the next step.

Recent examples of application domains relevant to streaming data are becoming more
numerous and more important, including network intrusion detection, transaction streams,
phone records, web click-streams, social streams, weather monitoring, etc. There has been
active research on how to store, query, analyze, extract and predict relevant information from
data streams. Clustering is a key data mining task. This is the problem of partitioning a set
of observations into clusters such that observations assigned in the same cluster are similar
(or close) and the inter-cluster observations are dissimilar (or distant). The other objective
of clustering is to quantify the data by replacing a group of observations (cluster) with one
representative observation (prototype).

In this paper, we consider clustering multi-dimensional data in the form of a stream,
i.e., a sequence of potentially infinite, non-stationary (i.e., the probability distribution of the
unknown data generation process may change over time) data arriving continuously (which

1 https://www.w3.org/RDF/.

@ Springer

https://www.w3.org/RDF/

Mach Learn (2017) 106:837-862 839

requires a single pass through the data) where random access to data is not feasible and storing
all arriving data is impractical. When applying data mining techniques, or more specifically
clustering algorithms, to data streams, restrictions in execution time and memory have to be
considered carefully. To deal with time and memory restrictions, many of existing data stream
clustering algorithms use the two-phase framework proposed in Aggarwal et al. (2003).

Velocity, which refers to the rate that Big Data are generated at high speed (speed of data
in and out), is an important dimension (or concept) of the Big Data domain (Demchenko
et al. 2013). Currently, Spark Streaming (Zaharia et al. 2012b) and Apache Flink (Fernandez
etal. 2014) may be considered as the most widely used streaming platforms. These distributed
streaming systems are based on two processing models, record-at-a-time and micro-batching.
On a record-at-a-time processing model, long-running stateful operators process records as
they arrive, update the internal state, and send out new records. On the other hand, the micro-
batching processing model runs each streaming computation as a series of deterministic batch
computations on small time intervals. Among the available frameworks that implements the
micro-batching processing model, we can find Spark Streaming (Zaharia et al. 2012b). It is
an extension of the core Spark API? that enables high-throughput, reliable processing of live
data streams.

In a previous work, G-Stream (Ghesmoune et al. 2014, 2015) was proposed as a data
stream clustering approach based on the Growing Neural Gas algorithm. G-Stream uses a
stochastic approach to update the prototypes, and it was implemented on a “centralized”
platform. In this paper, we propose batchStream, a novel algorithm for discovering clusters
of arbitrary shapes in an evolving data stream. The batchStream algorithm is implemented
on a distributed streaming platform based on the micro-batching processing model, i.e., the
Spark Streaming API.>3 In the proposed algorithm, the topological structure is represented
by a graph wherein each node represents a cluster, which is a set of “close” data points and
neighboring nodes (clusters) are connected by edges. Starting with only two nodes, the graph
size is not fixed but may also evolve as several nodes (clusters) are created in each iteration.
We use an exponential fading function to reduce the impact of old data whose relevance
diminishes over time. For the same reason, links between nodes are also weighted by an
exponential function. The data received in each interval are stored reliably across the cluster
to form an input dataset for that interval. Once the time interval is completed, this dataset
is processed via deterministic parallel operations, such as Map and Reduce to produce new
datasets representing either program outputs or intermediate states (Zaharia et al. 2012b). The
input data is split and the master assigns the splits to the Map workers. Each worker processes
the corresponding input split, generates key/value pairs and writes them to intermediate files
(on disk or in memory). The Reduce function is responsible for aggregating information
received from the Map functions. We demonstrate the utility of batchStream as a method
for unsupervised learning for an insurance Big Data. We also illustrate, on 2-dimensional
datasets, the performance of the algorithm to learn the topological structures and to find
clusters of arbitrary shapes. We make the source code of our batchStream algorithm, written
with Spark Streaming using the MapReduce paradigm, publicly available,* and our project
on the Spark-Notebook platform.?

The remainder of this paper is organized as follows: Sect. 2 summarizes the architecture of
our platform. Section 3 is dedicated to related works. Section 4 outlines the data fusion from

2 http://spark.apache.org/.

3 http://spark.apache.org/streaming/.

4 https://github.com/mghesmoune/spark-streaming-clustering.
5 https://github.com/Spark-clustering-notebook/coliseum.

@ Springer

http://spark.apache.org/
http://spark.apache.org/streaming/
https://github.com/mghesmoune/spark-streaming-clustering
https://github.com/Spark-clustering-notebook/coliseum

840 Mach Learn (2017) 106:837-862

Oozie @
RDF Ambrie J
treaming treaming — » Zookesiey
gl e f

Orchestration
Supervision

COLLECTE: Analysis: cluster config

Read parameters @ Writing analysis result for
visualization

Read parameters
Data source configuration

Fig. 1 Big data platform

different heterogeneous sources. Section 5 describes the batchStream algorithm. Section 6
reports the experimental evaluation on both the insurance data set and the public real-world
data sets. Section 7 concludes this paper.

2 Architecture of the Big data framework

In this section, we describe the Big data platform developed from the collection to visualiza-
tion step, and is depicted in Fig. 1. The application we targeted is insurance. The framework
is built upon the distributed clusters platform Teralab.®

1. Data sets The data in our platform are collected from heterogeneous sources includ-
ing proprietary (housing insurance contracts), and different open data sets such as the
French national institution of statistics INSEE” that contains information related to cen-
sus household and housing surveys (i.e., type of heating, proportions of housing type
in the local area etc.), the ONDRP® which is a department of the National Institute of
Advanced Studies of Security and Justice, which contains information related to crime
and delinquency (i.e., home invasions, average of armed burglaries against individuals
in their homes, etc.), as well as the well known open data base Dbpedia amongst oth-
ers. The data have different format (RDF, CSV, tables, ...). The open-data attributes are
listed in Table 1. However, for privacy reasons, the real dataset attributes provided by the
insurance company can not be detailed in this paper.

6 https://www.teralab-datascience.fr/en/home.
7 http://www.insee.fr/fr/bases-de-donnees/default.asp?page=open-data/open-data-utilisation.htm.
8 http://www.inhesj.fr/fr/ondrp.

@ Springer

https://www.teralab-datascience.fr/en/home
http://www.insee.fr/fr/bases-de-donnees/default.asp?page=open-data/open-data-utilisation.htm
http://www.inhesj.fr/fr/ondrp

Mach Learn (2017) 106:837-862 841
Table 1 List of the open-data attributes
Attribute Meaning Organization
constAvant49Prob Rate of dwellings in commune built before 1949 INSEE
const4874Prob Rate of dwellings in commune built 1949-1974 INSEE
const7589Prob Rate of dwellings in commune built 1975-1989 INSEE
const8903Prob Rate of dwellings in commune built 19892003 INSEE
cmbChauffUrbProp Rate of dwellings using urban heating INSEE
cmbGazVilleProp Rate of dwellings using city gas heating INSEE
cmbFioulProp Rate of dwellings using fuel oil heating INSEE
cmbElectProp Rate of dwellings using electric heating INSEE
cmbGazBoutProp Rate of dwellings using gas heating INSEE
cmbAutreProp Rate of dwellings using “other” heating INSEE
nbPer0a3 MOY Mean number of persons aged between 0 and 3 years INSEE
nbPer4a6 MOY Mean number of persons aged between 4 and 6 years INSEE
nbPer7all MOY Mean number of persons aged between 7 and 11 years INSEE
nbPer12a24 MOY Mean number of persons aged between 12 and 24 years INSEE
nbPer25a59 MOY Mean number of persons aged between 25 and 59 years INSEE
nbPer60a64 MOY Mean number of persons aged between 60 and 64 years INSEE
nbPer65a74 MOY Mean number of persons aged between 65 and 74 years INSEE
nbPerPlus75 MOY Mean number of persons aged between 75 years and INSEE
over
CambriolHabProp Rate of burglaries ONDRP
ViolDomProp Rate of violations de home ONDRP
VoIMArDOMProp Rate of armed robbery ONDRP
VolSArDOMProp Rate of violent home flights ONDRP
MalEnfProp Rate of child abuse ONDRP
IncBPrvProp Rate of voluntary fires of private property ONDRP
AttBPrvProp Rate of bombings of private property ONDRP
DgrBPrvProp Rate of degradation of private property ONDRP
InfUrbProp Rate of infringements of urban planning ONDRP
FrdFiscProp Rate of tax evasion ONDRP
IncBPub Rate of voluntary fires of public goods ONDRP
AttBPub Rate of bombings of public goods ONDRP
DgrBPub Rate of degradation of public goods ONDRP

INSEE: the French national institution of statistics, ONDRP: a department of the National Institute of Advanced
Studies of Security and Justice

2. Data aspiration batch The data are collected through a classical ETL as a batch and
considered and waved to the platform, and then transformed in appropriate format (RDF)
and finally stored in HDFS.

3. SaaS Configuration The component is a software which is a Service that provides a
dashboard to help a user to process a configuration on the data and transfer the data to
be represented into RDF in the platform.

4. RDF serialisation and ontologies In order to provide a semantic reasoning by inferring
new hidden data, all data are represented in RDF. Consequently, RDF data are processed

@ Springer

842 Mach Learn (2017) 106:837-862

in serialized n-triples format subject-predicate-object. Moreover, the semantic links are
built to connect RDF data of each data source with the concepts of an OWL ontology.
The fusion process uses those connections to infer semantic relations (subsumption,
equivalence, disjointness, etc.) across the datasources and identify duplicates of the same
real world entities (the owl sameAs relationships). Those links are found through a query
evaluation approach based on the SQL-like language called SPARQL. Finally, once the
proprietary data are cleaned and enriched with new inferred data, they are ready to be
used by the analysis and clustering module. All collected and inferred data are considered
as streaming data and are waved to analysis component in a useful format (matrix) to be
analyzed by the later.

5. Clustering and analysis The aim of clustering, also known as unsupervised learning, is
to separate the data set (waved from the collection process in a matrix format) into a
small number of groups where the members within a cluster are similar to each other,
and members from different clusters are different to each other. The presence of clusters
in a data set implies that there is the possibility of data reduction as all the members
of a single cluster can be represented by a typical member known as the prototype.
Furthermore, cluster membership is an important tool in analysing and understanding
the deep structure of the data set whenever the clusters correspond to groups of interest.
Since we are merging heterogeneous data sets from different sources, clustering provides
an analytical tool to quantify the new information created by this newly merged data set,
with respect to the individual data sets.

6. Visualization Graphical visualizations present the overall trends in the data, in contrast
to their exact values in numerical representations. These over-arching patterns assist in
providing a wider context in which the existing and new data can be interpreted. The
fusion of many existing data sets, whilst providing a potentially unlimited source of
new information, can also be potentially disorientating due to an information overload.
Visualizations are effective in indicating the directions in which the analysis should
proceed as they can present key aspects of the data set in a single graphical summary
which would be not evident in a numerical form.

3 Related work

We categorize the related work as follows.

Big data fusion Data integration has been much studied in the last decade in the database
community. Great efforts have been expended to provide algorithmic solutions, formal mod-
els, bodies of systems, and benchmarks for empirical studies. Recent approaches have been
studied in Big Data integration, amongst which we can cite the work in Knoblock et al. (2012)
that presents a semiautomatic approach to map structured sources to ontologies in order to
build semantic descriptions (source models). In Endrullis et al. (2012) is developed a tool
called WETSUIT to search and integrate web data from diverse and domain-specific entity
search engines, and which supports a high degree of parallel processing. Those works do not
deal with Big Data and RDF sources, and they do not discuss inference across networks and
semantic relationships for entity resolution during Big Data fusion.

Moreover, some tools that have been developed for RDF query evaluation, such as Jena® or
Sesame, '© are not suited to Big Data since they require the loading of previously established

9 https://jena.apache.org/.
10" http://rdfaj.org/.

@ Springer

https://jena.apache.org/
http://rdf4j.org/

Mach Learn (2017) 106:837-862 843

data in memory before evaluating them. It is then necessary to develop a SPARQL query
execution engine adapted to Big Data with the help of MapReduce. For this purpose, several
studies have been conducted such as HadoopRDF (Hang Du et al. 2012), Cliquesquare
(Goasdoué et al. 2015), H2RDF (Papailiou et al. 2014), but they focus on RDF storage.

The work in Harbi et al. (2015) is related to the optimisation of communication cost,
Inferray in Subercaze et al. (2016) presents an implementation of RDFS inference with
improved performance over existing solutions, Triad in Gurajada et al. (2014) proposes a
shared-nothing approach. All the above works focus on RDF storage optimization and cost
communication, and so do not tackle inference or the entity resolution issue. Halpin et al.
(2010) proposes to link entities at different levels of similarities such as compatible, very
similar, equal or linked only in some specific context. But there is no standard vocabulary by
W3C to represent these similarities and their use seems rare in Linked data. The transitivity
closure of owl:sameAs will generate a large amount of data and this amount even much bigger
for similarity evaluation. In our current system, owl:sameAs are used to link all entities with
the equal and similar relation. As our approach is rule-based (declarative), we can manage
these differents levels of similarity by defining compatible rules, similar rules, etc. In our
current work, we tackle similar relationships by adding uncertainty/confidence to relations
and use them to infer implicit uncertain relationships.

Data streaming clustering This section discusses previous works on data stream clustering
problems, and highlights the most relevant algorithms proposed in the literature to deal
with this problem. Most of the existing algorithms [e.g. CluStream (Aggarwal et al. 2003),
DenStream (Cao et al. 20006), or ClusTree (Kranen et al. 2011)] use the so called two-phases
(or online—offline) framework in which they divide the clustering process in two phases:
(a) Online, the data will be summarized; (b) Offfine, the final clusters will be generated.
Both CluStream (Aggarwal et al. 2003) and DenStream (Cao et al. 2006) use a temporal
extension of the Clustering Feature vector (Zhang et al. 1996) (called micro-clusters) to
maintain statistical summaries about data localities and timestamps during the online phase.
CluStream uses the concepts of a pyramidal time frame in conjunction with a micro-clustering
approach. DenStream (Cao et al. 2006) is a density-based data stream clustering algorithm
that overcomes one of the drawbacks of CluStream, its sensitivity to noise, by creating two
kinds of micro-clusters (potential and outlier micro-clusters). In the offline phase, the micro-
clusters found during the online phase are considered as pseudo-points and will be passed
to a variant of k-means in the CluStream algorithm (resp. to a variant of DBSCAN in the
DenStream algorithm) in order to determine the final clusters. ClusTree (Kranen et al. 2011)
is an anytime algorithm that organizes micro-clusters in a tree structure for faster access
and automatically adapts micro-cluster sizes based on the variance of the assigned data
points. Any clustering algorithm, e.g. k-means or DBSCAN, can be used in its offline phase.
SOStream (Isaksson et al. 2012) is a density-based clustering algorithm inspired by both
the principle of the DBSCAN algorithm and self-organizing maps (SOM) (Kohonen et al.
2001), in the sense that a winner influences its immediate neighborhood. In the SOStream
algorithm, merging, updating and adapting dynamically the threshold value for each cluster
are performed in an online manner. However, no split feature is proposed in the algorithm. A
number of authors have proposed variations on the Growing Neural Gas (GNG) approach.
Sledge et al. (2008) modified the GNG to detect incrementally emerging cluster structures.
The proposed GNGC algorithm is able to match the temporal distribution of the original
dataset by creating a new node whenever the received new data point is too far from its
nearest node. It is noted that the algorithm is computationally demanding. The ‘Grow When
Required’ (GWR) network (Marsland et al. 2002) may add a new node at any time, whose

@ Springer

844 Mach Learn (2017) 106:837-862

position is dependent on the input and the current winning node. The GWR deals with the
problem of novelty detection by adding new nodes into the network structure whenever the
activity of the current best-matching node is below some threshold, which implies that the
best-matching node is not trained to deal with that particular input. This means that the
network grows very quickly when new data is presented, but stops growing once the network
has matched the data to a given accuracy. Ailon et al. (2009), Braverman et al. (2011) and
Shindler et al. (2011) give approximations of the streaming k-means algorithm. G-Stream
(Ghesmoune etal. 2014, 2015) is an extension of the GNG algorithm to data streams. Whereas
all the previous algorithms are implemented on “centralized” platforms, we propose in this
paper a new approach for clustering data streams implemented on a distributed platform.

4 Big data fusion

In this section, based on our work in Benbernou et al. (2015), we present two aspects when
Big Data fusion is processed: the entity resolution approach based on inference mechanisms
to manage the ambiguity of real world entities for linking data at the semantic and URI levels,
and a query evaluation based on entity resolution results in order to include implicit data into
query results using the MapReduce paradigm to deal with huge volumes of data.

4.1 Entity resolution approach

Each data source uses its own OWL ontology (as a conceptual model) and identifies the
resource using internal URIs (as an entity identification). Therefore, the same entities may
be described using different or equivalent concepts (semantics) identified by different URIs
among different data sources. As a real world example, Paris is identified in INSEE source
(National Institute for Statistic and Economics Studies-France) by the URI http://id.insee.
fr/geo/departement/75, whereas Paris is identified in DBpedia source by the URI http://fr.
dbpedia.org/page/Paris. To reconcile such entities, we discuss in this section an inference
mechanism to connect semantically all heterogeneous RDF fragments to the same entity.

To illustrate, Fig. 2 shows fragments of two RDF sources, ds1:203 and ds2:h25, describing
the same house provided by the Insurance company and INSEE data sources, respectively.
The RDF fragments are serialized by facts, some of them are as follows: (1) ds1:h03 is
a dsl:House and located at ds1:ad03, (2) ds2:h25 is a ds2:Housing and has address
ds2:ad25, (3) ds1:ad03 is in Street [eiffel st, inCity of dsl:paris, (4) ds2:ad2S5 is in
1 eiffel st., inCity ds2:dep75, (5) dsl:paris is same as ds2:dep75, (6) ds1:House is a
ds2:Housing. When propagating fact (5) on facts (3) and (4), it is infered that ds1:ad03
and ds2:ad?25 represent the same address. This resolution will be propagated to facts (1) and
(2) to infer that ds1:h03 and ds2:h25 represent the same house by considering the semantic
linking given by axiom (6) and the given domain rule: there can be only one house at a
given address. The semantic entity resolution is based on a functional key that includes the
property rdf:type. The rules are defined by business experts. For instance, the rule dealing
with the housing is defined as follows using RDF and its functional key is (rdf:type Housing;
located):

R1 (?x; rdf:type ds2:Housing A ?y; rdf:itype ds2:Housing) A (?x; dsl:located ?a; A ?y;
dsl:located ?a;) A (?a; owl:SameAs ?a;) = (?x; owl:SameAs ?y;)

@ Springer

http://id.insee.fr/geo/departement/75
http://id.insee.fr/geo/departement/75
http://fr.dbpedia.org/page/Paris
http://fr.dbpedia.org/page/Paris

Mach Learn (2017) 106:837-862 845

Dpedia:Settlement
foas:Agent

rdfs:subClassOf
rdfs:subClassOf

FOAF DBpedia

foaf:Person owl:disjointClass

dpedia:City

rdf:type rdfs:subClassOf rdf:type
DS1: Insyrance company DS2: INSEE
rdf:type -Capi
ye dsl:Capital | ;\1:5ameAs ds2:dep75
) : | e
Leiffel st (_ds1:paris owl:equivalent ds2:Location 1 eiffel st.
ds1:Address € Class —>
ds:stred ds2:inCity ds2:inCity!
: f:type rdf:type ds2:treet]
ds1:bob ds1:ad03 rdfs:subClassOf
ds1:House >(_ds2:Housing ds2:ad25
dsf:locate
ds1:hasOwner rdf:type
rdf:type ds2:hasAddress|
ds1:h03 ds2:h2s D
| =

owl:equi;ﬁntProperty

Fig. 2 Semantic connections between multiple data sources

The rule means that there can be only one house at a given address, i.e., if there are two
houses x; and y; located respectively at a; and a; and we know that a; and a; are the same
location, then we deduce that x; is same as y;.

The entity resolution rules are applied on the RDF data using a resolution algorithm. We
propose a MapReduce algorithm that triggers entity resolution rules in a parallel manner on
distributed small pieces of data. The algorithm reconciles pairs of entity fragments matching
a functional key that appear in the antecedent of the resolution rules. They are processed
by connecting URIs using the ontological “owl:SameAs” relationship. The Map function
groups the entity fragments related to the same entity by assigning them the same key. For
that, the Map function transforms each serialized entity fragment into a <key, value>. The
key part is composed of the properties of the serialized entity fragment that appears in the
antecedents of the entity resolution rules, and the value part is the URI of the entity fragment
to be reconciled. The Reduce function receives as input a list of <key, List<value>>
where key is the key resolution defined by the Map function and List<value> is the list
of URIs of entity fragments sharing the key, thus representing the fragments of the same
entity. The Reduce function reconciles URIs of the same key by connecting them using the
“owl:SameAs” relationship.

4.2 MapReduce based query evaluation

We present in this section a MapReduce query evaluation approach to compute a com-
plete query result by including implicit data. Let us consider a SPARQL query Q2: ?x
rdf:type ds2:Housing A?x?p?y) where the aim is to obtain any information about a residence.
Traditional processing of this query returns only the address of the residence ds2:h25. How-
ever, when we consider: (1) the entity resolution result of previous section, namely ds/:h03
owl:SameAs ds2:h25, the result will be complemented by the ds/:h03 owner of the prop-
erty and (2) the semantic connection dsi:House rdfs:subClassOf ds2:Housing, the result is
completed by ds/:h03.

@ Springer

846 Mach Learn (2017) 106:837-862

We propose a query rewriting algorithm based on the MapReduce paradigm in order to
enrich a user query by adding more RDF patterns that explicitly refer to the implicit data.
This is processed in two steps. In the first step, a query plan composed of MapReduce jobs is
generated for the query. In the second step, the generated query plan is evaluated in a Hadoop
framework to produce the results.

The user query is rewritten using the inference rules, including the entity resolution as
SameAs relationship rules. The inference rules are of the form: antecedent = goal. The list
of inference rules contains the RDFS, the OWL and the axiom rules defined by the user. To
illustrate the proposed approach, we give a typing and an entity resolution rule: (R7): RDFS
typing inference rule: (?x rdf:type ?y) A (?y rdfs:subClassOf 7z) = (?x rdf:type 7z)
and (R2): Entity resolution inference rule: (7x ?7p M) A (7x owl:SameAs?y) = (?7y ?p).
The inference rules are applied by a backward reasoning algorithm. For a given query, the
algorithm generates (1) aMapReduce plan by applying inference rules to enrich query patterns
and (2) the MapReduce jobs. For each query pattern, the algorithm generates new sub-patterns
corresponding to the antecedent of the rules whose goal matches the pattern.

Finally, the enriched data are now ready to be translated to the analysis and clustering
component. The enriched data are transformed in appropriate format (matrix) to the clustering
component.

S Micro-batching clustering

In this section we introduce Micro-Batching Growing Neural Gas for Clustering Data Streams
(batchStream) and highlight some of its novel features. The batchStream algorithm is based on
Growing Neural Gas (GNG), which is an incremental self-organizing approach that belongs
to the family of topological maps such as Self-Organizing Maps (SOM) (Kohonen et al. 2001)
or Neural Gas (NG) (Martinetz and Schulten 1991). It is an unsupervised algorithm capable
of representing a high dimensional input space in a low dimensional feature map. Typically,
it is used for finding topological structures that closely reflect the structure of the input
distribution. We assume that the data stream consists of a sequence 2. = {X, X2, ..., X,}
of n (potentially infinite) elements of a data stream arriving at times ¢, t2, ..., , t,, Where
X, = (xil, xl.z, . xl.d) is a vector in 9. We denote by X; = {x1, ..., X,} where p is the size
of the window (the data batch), thus 2. = {X|, Xo, ..., X, }. At each time, batchStream
is represented by a graph ¢ where each node represents a cluster. Each node ¢ € ¢ has (a) a
prototype w, = (wg, wg, ey w‘g) representing its position; (b) . representing the weight
of this node; (c) error(c) an error variable representing the distance between this node and
the assigned data-point.

When data arrive in a stream, we may want to estimate the clusters dynamically, updating
them as new data arrive. An implementation of a Growing Neural Gas algorithm over a Data
Stream on a “centralized” platform would be as follows (Ghesmoune et al. 2014, 2015):
starting with two nodes, and as a new data point is reached, the nearest and the second-
nearest nodes are identified, linked by an edge, and the nearest node with its topological
neighbors are moved toward the data point. Each node has an accumulated error variable
and a weight, which varies over time using a fading function. We used the fading function
just to reduce the impact of old instances. In the future work, we anticipate to integrate drift
detectors into our algorithm.

@ Springer

Mach Learn (2017) 106:837-862 847

Using an edge management procedure, one, two or three nodes are inserted into the graph
between the nodes with the largest error values. Nodes can also be removed if they are
identified as being superfluous.

However, the design of a naive “distributed” version of G-Stream (Ghesmoune et al. 2014,
2015) would raise difficulties, which are resolved by batchStream. The main difficulties for
designing a distributed and parallel version of G-Stream are the decomposition of the data
stream clustering problem into the elementary functions, Map and Reduce, and how to update
the constructed model as soon as we receive a new data. The new frameworks dedicated to
distributed systems such as Spark (Zaharia et al. 2012a; Meng et al. 2016), deal with data
stream using data windows. Thus the micro-batch paradigm is necessary to be taken into
account to design a new algorithm. The algorithm operates with the parameters to control
the decay (or “forgetfulness™) of the estimates. It uses a generalization of the mini-batch
GNG update rule. In the adaptation step of the GNG algorithm, the nearest node and all of
its neighbors are moved in the direction of the data point.

To incorporate the scheme of mini-batch learning, we first define the objective function
for online clustering for a fixed topology as follows:

S0y = 3 S Ko xxalx — wi D)

x;eDS+D ceC

where DSUHD = (X, X,, ..., X;+1} and x (x;) is the assignment function.
Next, by referring to the minimization step by fixing y, we have the following cluster
center recursion formula in Eq. (1):

> epso K @ xxixi

D epsi K€ x&x)
B ineDS(”” K(c, x (xi)x; + inex(,) K (c, x (x1))X;
- inEDS(’*') K(c, x(xi)) + ineX(,) K, x(x)

Rather than scanning all the data, we scan them block by block:

w+D — drec inEPr“_l) K(e,r)xi+) ,cc inePr“) K(c, r)x;
‘ Yrec ZX,'GP"(”” K(ce,r)+ 2 ec Zx,—ePr(/) K(c,r)

- ZrEC K(c,r) inePr(’*') X; + Zrec K(c,r) Zx;ePr(f) X;
Y Y oxiepra-n K(e,m) + 3 cc D yepro K(c,r)

(t—1) 2x;eprt—D Xi
ZreC K(C, V)I’lr In(t—l)
r

B > rec Zx,-ePr('*U K(e,r)+ 2 ec Zx,-ePr(’) K(c,r)

(t—1) Lnepr® Xi
ZreC K(C’ r)mr ;n(z—l)
«

Dorec Loxepre-n K(er) + 3 ce Y g epro Klc.r)
Y Kenw! U™V + 3 K. ng m!™"
e yepra-n K,)+ 00 Yogiepro Kle,r)
B ZrEC K(c, r)wgt—l)ngt—l) + ZrEC K(c, r)zﬁt)mﬁz—l)

- -1 -1
e Ko™ + Y, cc K(e.rym!™"

w£t+1) —

ey

+

@ Springer

848 Mach Learn (2017) 106:837-862

where Pr = {x;: x (x;) = r}. However, in batchStream (see Algorithm 1 for detail), for each
batch of data X,, we assign all points X; to their best match unit, compute the new cluster
centers, then update each cluster. The update rule, i.e., the adaptation step, in a mini-batch
version without taking into account the neighbors of the referent would be as described in
Eq. (2):
wrny_ W0 42 ml
wC

n(o+ mg)

(@)

In contrast Eq. (3) updates the number of points assigned to the cluster, where w) is the
previous center for the cluster, n() is the number of points assigned to the cluster thus far,

(t) is the new cluster center from the current batch, and m(t)
to the cluster ¢ in the current batch:

is the number of points added

nD =y © 4 . 3)

In most data stream scenarios, more recent data can reflect the emergence of new trends
or changes in the data distribution (de Andrade Silva et al. 2013). There are three window
models commonly studied in data streams: landmark, sliding and damped. We consider the
damped window model, in which the weight of each data point decreases exponentially with
time via a fading function. The weight of each node decreases exponentially with time ¢ via
a decay factor parameter 0 < o < 1, i.e.,

n'C(H'l) = nc(t)oz. “4)

If the weight of a node is less than a threshold value then this node is considered as outdated
and then deleted (with its links). The decay factor can be used to ignore the past: with o = 1
all data will be used from the beginning; with « = 0 only the most recent data will be used.
This is analogous to the fading function (de Andrade Silva et al. 2013) which is defined as
follows: f(t) = 2=™ where A > 0.In a general case, when the referent moves toward a
data point, it also moves its neighborhood toward this point (Kohonen et al. 2001). In our
model, we use Eq. (5) to carry out the adaptation step:

Wi+ — Wy)”y)“‘f‘zref{ K(r.0z)"m)"
C

S
(t)ot +Y .0 K(r, c)m(t)

where z() is the previous center for the cluster r (which is a neighbor of the considered
referent node), K is called the neighborhood function defined in Eq. (6), where §(r, ¢) is the
length of the shortest path between nodes r and c:

K(r,c) =exp <—5(I;C)> . 6)

We are now ready to outline batchStream in Algorithm 1.

The input data are split and the master assigns the splits to the Map workers. Each worker
processes the corresponding input split, generates key/value pairs and writes them to inter-
mediate files (on disk or in memory). The key corresponds to the bmu whereas its value
represents a tuple of (bmuy, error, point, 1). Then the master will launch Reduce tasks that
take as input both the results of the Maps and the results of the previous interval’s Reduces.
The Reduce function is responsible for aggregating information received from the Map func-
tions. For each key, the Reduce function works on the list of values, closest. To compute the
centroid of each node, the Reduce function groups by bmu and sums the values received in

@ Springer

Mach Learn (2017) 106:837-862 849

Algorithm 1: batchStream

Input: 7. = {x1,X3, ..., Xp}, &, Aages the number of nodes to add at each iteration, 7,,;,,, dg€max
Output: set of nodes 4’ = {c, ¢2, ...} and their prototypes W = {w¢,, Wc,, ...}

1 Initialize of the model by creating a graph of two nodes (the first 2 data-points)

2 while there is a micro-batch to proceed do

3 9 <« get the micro-batch of data points arrived at time interval ¢

Apply the mapping step in Function map

Apply the reduce step in Function reduce

Apply the adaptation step: updateRule(pointStats, &, Agge, dgemax)

Update the variable error of each node

Apply fading, delete isolated nodes

Add new nodes in Function addNewNodes

10 Decrease the error of all units

11 end

e ® N » s

the closest list. The final output is the list pointStats. Each element of pointStats contains
a bmu, as the key, with the second nearest node, the sum of errors, the sum and the count
of points assigned to each node, as the value. The function updateRule performs operations
related to updating the graph edges. The way to increase the age of edges is inspired by the
fading function in the sense that the creation time of a link is taken into account. Contrary
to the fading function, the age of the links will be strengthened by the exponential function
Dhage(t=10) \where Aage > 0, defines the rate of growth of the age over time, ¢ denotes the
current time and 7y is the creation time of the edge. The next step is to add a new edge that
connects the two closest nodes. The last step is to remove each link exceeding a maximum
age, since these links are no longer useful because they were replaced by younger and shorter
edges that were created during the graph refinement in step 9.

Function map(%;: the z-th micro-batch of data points)

1 foreach x;; € %, do

2 Key < bmu, the nearest node

3 Value < (bmuy, error,X;;, 1) such as: bmus is the second nearest node, and
error = X = W, II*

4 Emit (Key, Value)

5 end

6 Experimental evaluations

In this section, we present an experimental evaluation of the batchStream algorithm. We com-
pared our algorithm with several well-known and relevant data stream clustering algorithms,
including ClusTree, DenStream, and the MLIib implementation of Streaming-KMeans. Our
experiments were performed on Spark Streaming platform using public real-world and syn-
thetic data sets. Experiments on the large datasets (the Sensor dataset, and the insurance
dataset in Sect. 6.1) are conducted on the Teralab'! cluster which runs the Debian operating
system with the following properties:

1 https://www.teralab-datascience.fr/en/home.

@ Springer

https://www.teralab-datascience.fr/en/home

850 Mach Learn (2017) 106:837-862

Function reduce(key;, List closest)

Output: centroid;: centroid of the 7-th micro-batch, count;: number of data points in the z-th
micro-batch

1 bmuy < 0; errory < 0; sumy < 0; count; < 0;
2 foreach value; € closest do

// where value; is the corresponding value of the pair (key;, Value)
3 bmuy < bmuy + the 1-st value of tuple value;
4 errory < error; + the 2-nd value of tuple value;
5
6

sum; <— sum; + the 3-th value of tuple value;
count; < count; + the 4-th value of tuple value;
7 end
8 centroid; < sum;[count;

Function updateRule(List pointStats, &, Agge, Ag€max)

// Decrease the weight of nodes
1 foreach ¢ € 4 do 7, < a.7m,
2 foreach ps € pointStats do
// ps is a tuple: (bmu, (bmuy, error, sum, count))
3 Calculate the new centroid in Equation (5)
4 Increment the age of all edges emanating from bmu and weight them
5 if bmu and bmuy are connected by an edge then set the age of this edge to zero else create an edge
between bmu and bmuy, and mark its time stamp
6 end
7 Remove the edges whose age is greater than ageqx . If this results in nodes having no emanating
edges, remove them as well

Function addNewNodes(n : number of nodes to add)

1 for j < 1tondo

2 Find the node with the largest error

3 Find the neighbor f with the largest accumulated error

4 Add the new node r half-way between nodes g and f: w, < 0.5(wg; + W)

5 Insert edges connecting the new unit with units ¢ and f, and remove the original edge between ¢
and f. Remove the original edge between ¢ and f

Initialize the weight of r and the age of edges emanating from r to zero

Decrease the error variables of ¢ and f by multiplying them with a constant € where: 0 < € < 1
Initialize the error variable of r with the new value of the error variable of ¢

end

e ® 9

— 5 data-nodes: 50 GB system disc, 20 VCPUs, 120GB RAM, 4 x 200 GB data discs
— 1 edge-node: 4 VCPUs, 32 Gb RAM, 100GB hard disc

— 1 service-node: 4 VCPUs, 16 Gb RAM, 60 GB hard disc

— 2 name-nodes: 30 GB system disc, 2 VCPUs, 4 GB RAM.

The experiments for the other datasets were conducted on a PC with Core(TM)i7-4800MQ
with 2 x 2.70 GHz processors, and 8 GB RAM, which runs the Ubuntu 13.10 operating
system.

6.1 Application for insurance Big Data

In this section, we demonstrate the utility of batchStream as a method for unsupervised
learning for insurance Big Data, consisting of 2,133,488 insurance contracts for damages

@ Springer

Mach Learn (2017) 106:837-862 851

Table 2 Summary statistics for

batchStream clusters for Cluster Total claims #contracts #claims
insurance data 1 10,327,077 160,281 460

66 10,161,913 138,769 709

55 8,480,123 109,588 423

21 5,142,238 81,741 378

47 4,334,039 88,085 367

All 89,410,763 2,133,488 6536

claims made in continental France for the calendar year 2012. Fifteen variables were supplied
initially by the insurer (but only five variables are relevant and used for the learning task), and
an analysis based solely on these in-house variables were inconclusive. We then proceeded
to enrich these data with publicly available open data using semantic connections between
multiple data sources: 20 variables concerning the age of dwelling construction, the type of
heating used, and the age composition of the household members from population census
and surveys conducted by the INSEE (the French official national statistical agency), and
13 variables concerning the rates of different types of crimes collected by the ONDRP (the
French crime statistics agency) as described in Sect. 4. The fusion process allows to obtain a
new data set enriched with open data attributes listed in Table 1. This task is very important
for data analytics using machine learning algorithms.

To simplify the analysis, we focus on the fire damages. Most contracts are not subject
to a claim (2,126,952 or 99.69%) whereas the remaining 6536 contracts or 0.31% account
for 89,410,763 EUR of damages paid out by the insurer. Further analysis of this highly
inhomogeneous structure, in particular the added value of open Big Data, would be of interest
to the insurer’s business model. The batchStream algorithm was applied to this merged data
set, and 84 clusters of varying sizes, forms and locations were the result. Table 2 shows
the five clusters which exceeded 4 million EUR in total claims per cluster: these 5 clusters
account for 43.00% of the 89 million EUR of payouts and 35.76% of the 6536 claims.

The summary statistics in Table 2 indicate that the batchStream clusters contain important
information of the insurance claims, though they are not sufficiently detailed. Because we do
not have the true classes for the insurance data, so we can not evaluate the clustering result
using accuracy, NMI and Rand index which use the true labels. In our use case, we collaborate
with an external business expert from insurance company that allow us to validate the results.
For this reason we combine the batchStream algorithm with a decision tree algorithm in
order to explain automatically and statistically the different clusters. Hence, we carried out
a post-hoc decision tree [Classification and Regression Tree or CART (Hastie et al. 2009)]
analysis, computed by the rpart R package (Therneau et al. 2015). Decision trees produce a
set of interpretable decision rules used to construct to these clusters, as shown in Fig. 3. All
trees are split at the root node using the in-house variable nbsin_inc (number of people
affected in the claim). For the entire data, there are no further splits, leading to a simple
decision tree on the top left, indicating that the structure of these data are not revealed at this
aggregated level.

On the other hand, the decision trees for the batchStream clusters are highly structured,
with the leaf nodes with an average claim of greater than 50,000 euros coloured in blue. The
other in-house variables which appear in these decision trees are dept (2 digit postcode)

@ Springer

852

Mach Learn (2017) 106:837-862

All

nbsin_inc < 0.5

n=2126952 n= 6536

Cluster #55
nbsin_inc < 0.5

dept = 26,30,54,57,83,84
n=109 588
nbPers19a24_MOY >= 0.054
2296 057

n= 258

nbPers12a18_MOY < 0.25

conslAvMSPmb >=0.29 ile78 ?fg
P
W nbPers60a64_MOY < 0.17
258 320 862 31 0
" (e a09)"

nbPers0a3_| MOV >=0.045

n= 100

n= 13

n= 25

Cluster #1

nbsin_inc < 0.5

dept =1,2,4,5,7,8...,89,90
n=160 281

o0 516724

dept = 125789 88,841 347 666) ‘347666

2833797 cmbAutreProp < 0.51

n= 312
3183746 1445144

n= 121

Cluster #21
nbsin_i |nc<05 (o]

const4974Prob >=0.088

n=81741
onsl4974onb <0.083
2 055 818 / i

n= 303

993 670
n= 7
cmbGazBoutProp < 0.027
s ~
nbPers12a18_MOY < 0.29
95 943
b 1123703
n= 7
nbPers12a18_| MOV >=0.049
748 810
n= 11
124 295
n= 19

Cluster #66

nbsin_inc < 0.5

dept =4,7,8,9,16,...79,90

13760

constAvt49Prob < 0.78

s
n
Constag03Prob < 0.18
<

nbPersPlus75_MOY < 0.22

const7589Prob >= 0.11
X
cmbAutreProp >= 0.37 (1480817

F=—h
nbpiecs < 10 421374
448211 884581)
- 7 - 7
dept=19,70,67,68

z
NEM MOY <23
(@CED)
=z / \
NEM MOY >= 23

~ 52 L)
nbPers: 9324 MOV >= D 035
anersAaG MOV <0.026

(C318325)
- 977 231
(Ca92am) ™
s

Cluster #47

nbsin_inc < 0.5

cmbElectProp < 0.68
=68 085

n= 17

nbpiecs >= 2.5

- 8

DgrPub >= 30

nbPers7ai1_MOY <0.3

o %

nbPers25a59_MOY >= 0.68 nbPers7al1_MOY >= 0.32

568 295 437 018)yaigntProp >= 0.0051 (564 944
CXG = 10 7
198575 455227
w - s

Fig.3 Decision trees for batchStream clusters of insurance data, for the total data and the 5 largest clusters by
total cluster payouts. Leaf nodes with average claims of over 50,000 EUR are coloured in blue (Color figure
online)

and nbpiecs (number of rooms in the dwelling). The INSEE housing variables, concerning
the year of dwelling construction const*, the age composition of household members
nbPers* and the type of heating cmb*, are frequently used in these decision rules, whereas
the ONDRP variables appear less frequently.

For Cluster #1, the important leaf nodes are created by decisions involving constAvt
Prob (proportion of dwellings constructed before 1949) and cmbAutreProp (proportion
of dwellings using ‘other’ heating). The tree for cluster #66 has the most number of levels of
those displayed, and involves additionally const7589Prob, const8903Prob (propor-
tion of dwellings constructed between 1975 and 1989, and 1989 and 2003), ANEM_MOY
(average number of years since the last home improvement) and nbPers4a6_MOY,
nbPersl9a24_MOY, nbPersl9a24_MOY (average number of persons between 4 and
6years, 19 and 24 years, and more than 75 years of age).

@ Springer

Mach Learn (2017) 106:837-862 853

Table 3 Overview of all data

sots Datasets #records #features #classes
Sensor 2,219,803 5 54
CoverType 581,012 54 7
KddCup99 494,021 41 23
Sea 60,000 3
letter4 9344 2 7
DS1 9153 2 14

For Cluster #55, the other age composition variables nbPers0a3_MOY, nbPersl2a
18_MOY, nbPers60a64_MOY (average number of persons between 0 and 3 years, 12 and
18 years, and 60 and 64 years of age) appear. The final two clusters #21 and #47 are perhaps
the most interesting from the point of view of added value of open data for describing fire
damage insurance claims. The tree for cluster #21 involves cmbGazBoutProp (proportion
of dwellings using bottled gas heating) and for cluster #47 cmbElectProp (proportion of
dwellings using electric heating) and DrgPub (number of attacks against public property)
and MalEnfProp (proportion of households with crimes committed against children). For
these batchStream clusters, more detailed information relevant to insurance claims is provided
by freely available open data.

6.2 Application for public datasets
6.2.1 Datasets and quality criteria

To evaluate the clustering quality and scalability of the batchStream algorithm, both real and
synthetic data sets are used. The synthetic data sets used are DS1 and letter4. All the others
are real-world publicly available data sets. Table 3 overviews all the data sets used. DS1 is
generated by http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2. The let-
ter4 data set is generated by a Java code https://github.com/feldob/Token-Cluster-Generator.
The Sea data set was taken from http://www.liaad.up.pt/kdus/products/datasets-for-concept-
drift. The real-world datasets were taken from the UCI repository (Lichman 2013), which are
the KDD-CUP’99 Network Intrusion Detection stream data set (KddCup99) and the Forest
CoverType data set (CoverType) respectively.

The KddCup99 Network Intrusion Detection dataset (Stolfo 2000) was used in KDD Cup
1999 Competition. The applicative goal of KddCup99 is to distinguish attacks from normal
connections. A connection is a sequence of TCP packets starting and ending at specified
times, flowing from a source IP address to a target [P address under well defined protocols. It
is described by 41 attributes; we only used the 34 numeric ones. Each connection is labeled
as one of the 23 classes, the normal class and the specific kinds of attack, such as buffer
overflow, ftp write, guess passwd, and neptune.

The Forest CoverType dataset (Blackard and Dean 1999) contains in total 581,012 obser-
vations belonging to seven forest cover types. Each observation consists of 54 geological and
geographical features that describe the environment in which trees are observed, including
10 quantitative variables, 4 binary wilderness areas and 40 binary soil type variables.

The Sensor dataset (Madden et al. 2003) contains measurements (temperature, humidity,
light, and sensor voltage) collected from 54 sensors deployed in the Intel Berkeley Research
Laboratory. The whole stream contains consecutive measurements recorded over a 2 month

@ Springer

http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
https://github.com/feldob/Token-Cluster-Generator
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift
http://www.liaad.up.pt/kdus/products/datasets-for-concept-drift

854 Mach Learn (2017) 106:837-862

period (1 reading per 1-3 min). We used the sensor ID as the class label, so the learning task
of the stream is to correctly identify the sensor ID (1 out of 54 sensors) purely based on the
sensor data and the corresponding recording time. While the data stream runs over time, the
concepts underlying the stream evolve. For example, the lighting during the working hours
is generally stronger than the night, and the temperature of specific sensors (e.g. conference
room) may regularly rise during the meetings.

The Sea dataset (Street and Kim 2001) contains 60,000 observations, 3 attributes and 3
classes. The attributes are numeric between 0 and 10, only two are relevant. There are four
concepts, 15,000 observations each, with different thresholds for the concept function, which
is if relevant_featurel + relevant_feature2 > Threshold then class =0. The threshold values
are 8,9,7, and 9.5. The dataset has about 10% of noise.

The algorithms are evaluated using three performance measures: Accuracy (Purity), Nor-
malized Mutual Information (NMI) and the Rand index. Even if there are many metrics for
evaluating a clustering task, we selected these three which appear to be the most widely
used in clustering tasks. It is known that the NMI and Rand index are good metrics in the
sense that they are independent of the number of clusters (Strehl and Ghosh 2002) while
the accuracy is biased by the number of clusters (the higher the number of clusters are, the
higher the accuracy values are). The value of each measure lies between 0 and 1. A higher
value indicates better clustering results. The Accuracy (Purity) averages the fraction of items
belonging to the majority class of in each cluster.

where K denotes the number of clusters, N id denotes the number of points with the dominant
class label in cluster i, and N; denotes the number of points in cluster i. Intuitively, the
accuracy (purity) measures the purity of the clusters with respect to the true cluster (class)
labels that are known for our data sets (Cao et al. 2006). Normalized mutual information
provides a measure that is independent of the number of clusters as compared to purity. It
reaches its maximum value of 1 only when the two sets of labels have a perfect one-to-one
correspondence (Strehl and Ghosh 2002). Given the true clustering A = {Aq, ..., A} and
the grouping B = {By, ..., By} obtained by a clustering method, let C be the confusion
matrix whose element C;; is the number of records of cluster i of A that are also in the cluster
j of B. The normalized mutual information NMI(A, B) is defined as (Forestiero et al. 2013):

—2 34 X052, Cijlog(CijN/ Ci.C.j)

NMI(A, B) = —¢& & ,
221 Cilog(Ci./N) + 332, C jlog(C.j/N)

where Cy (resp. Cp) is the number of groups in the partition A (resp. B), C;. (resp. C.;)
is the sum of elements of C in row i (resp. column j), and N is the number of points. If
A = B,NMI(A, B) = 1. If A and B are completely different, NMI(A, B) = 0. The Rand
index measures how accurately a classifier can classify data elements by comparing cluster
labels with the underlying class labels. Given N data points, there are a total of (g]) distinct
pairs of data points which can be categorized into four categories: (a) pairs having the same
cluster label and the same class label (their number denoted as N''1); (b) pairs having different
cluster labels and different class labels (their number denoted as N0); (c) pairs having the
same cluster label but different class labels (their number denoted as N'9); (d) pairs having
different cluster labels but the same class label (their number denoted as N°!). The Rand
index is defined as (Rand 1971):

@ Springer

Mach Learn (2017) 106:837-862 855

Table 4 Comparing batchStream with other data stream clustering algorithms

Datasets batchStream Streaming-KMeans DenStream ClusTree
DS1

Acc 0.9773 0.8067 0.7740 0.6864

NMI 0.7019 0.7274 0.6973 0.7064

Rand 0.8473 0.8657 0.8491 0.8442
letter4

Acc 0.8566 0.4848 0.8110 0.8110

NMI 0.6844 0.4672 0.1637 0.2425

Rand 0.8542 0.6915 0.5019 0.5514
Sea

Acc 0.8374 0.6269 0.8240 0.8224

NMI 0.1381 0.0018 0.1646 0.1583

Rand 0.4708 0.5030 0.4700 0.4917
KddCup99

Acc 0.9262 0.9832 0.9544 0.8182

NMI 0.6622 0.7035 0.6290 0.5724

Rand 0.8367 0.8382 0.8164 0.8289
CoverType

Acc 0.6527 0.4957 0.5850 0.5850

NMI 0.1653 0.0727 0.0475 0.0362

Rand 0.6233 0.5931 0.4604 0.5080
Sensor

Acc 0.1086 0.0690 0.5850 0.5850

NMI 0.1471 0.0970 0.0475 0.0362

Rand 0.9738 0.9555 0.4604 0.5080

The bold value indicates the highest value for each indices (Acc, NMI, and the Rand)
N
Rand = (N"' + NOO)/(2>.

6.2.2 Evaluation and performance comparison

This section aims to evaluate the clustering quality of the batchStream and to compare it to
well-known data stream clustering algorithms. As explained in Sect. 5, batchStream algo-
rithms start with two nodes. For comparison purposes, we used the MLIib implementation of
Streaming-KMeans (this latter algorithm was also coded in the Spark Streaming platform).'?
A comparison is also performed with DenStream (Cao et al. 2006) and ClusTree (Kranen
et al. 2011) from the stream R package (Bolanos et al. 2014). Streaming-KMeans was eval-
uated by setting the k parameter to the right number of classes of each dataset. DenStream
was evaluated by performing a variant of the DBSCAN algorithm in the offline step. Clus-
Tree was evaluated by performing the k-means algorithm in the offline step by setting the k
parameter to 10. Table 4 reports the results in terms of accuracy, NMI, and the Rand index.

12 https://spark.apache.org/docs/latest/mllib-clustering.html#streaming-k-means.

@ Springer

https://spark.apache.org/docs/latest/mllib-clustering.html#streaming-k-means

856 Mach Learn (2017) 106:837-862

1/9 of all windows 3/9 of all windows

1000 1000
900
800

700

0 200 400 600 800 1000 1200 1400 o 200 400 600 800 1000 1200 1400

5/9 of all windows 9/9 of all windows

1000 1000
900
800+
700

600

400
300
200

100

L L L n N 0 " " . " n s
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Fig. 4 Evolution of graph creation of batchStream on DS1 (data set and topological result). The intermediate
graph after seeing the 1/9 of all windows (the data batches); the 3/9 of all windows; the 5/9 of all windows;
and the final graph (9/9 of all windows)

The reported values are the final values of accuracies, the final NMlIs, and the Rand indices
at the end of training. In this table, it is noteworthy that batchStream’s Accuracies (Acc)
are higher for all data sets as compared to Streaming-KMeans, DenStream and CluStree,
except for ClusTree and Streaming-KMeans for the KddCup99 data set. Its NMI values are
higher than the other algorithms except for Streaming-KMeans for the DS1 and KddCup99
data sets. Its Rand index values are higher than the other algorithms except for Streaming-
KMeans for the Sea and DS1 data sets. We recall that batchStream proceeds in one single
phase whereas Streaming-KMeans, DenStream and ClusTree proceed in two phases (online
and offline phase).

6.2.3 Visualization of graph creation evolution

Non-overlapping data streams Fig. 4 shows the evolution of the node creation by applying
batchStream on the DS1 data set (colored points represent data points of the data stream
and red points are nodes of the graph with edges in blue lines; each color of the data points
correspond to class of labels and the size of the nodes of the graph are proportional to their
weight). It illustrates that batchStream manages to recognize the structures of the data stream
and can separate these structures with an appropriate visualization.

@ Springer

Mach Learn (2017) 106:837-862 857

1/9 of all windows 3/9 of all windows

700 700

250 L L L L L L L
400 450 500 550 600 650 700 750 800 850 900

5/9 of all windows

750
700
650
600
550
500
450
400
350

300/

250 L L L L n L s L
400 450 500 550 600 650 700 750 800 850 900 400 500 600 700 800 900 1000

Fig. 5 Evolution of graph creation of batchStream on lettersMR (data set and topological result). The inter-
mediate graph after seeing the 1/9 of all windows (the data batches); the 3/9 of all windows; the 5/9 of all
windows; and the final graph (9/9 of all windows)

Overlapping data streams In some situations, input data streams may overlap (i.e, some data
points are located on the same space). Figure 5 shows the evolution of graph creation of
batchStream on the lettersMR dataset where data points of the letter M arrive at first then
those of R. The graph generated by batchStream can adapt with the evolving overlapped data
stream since it can “forget” the old letter M and learn the topological structure of the novel
letter R (this is mainly due to the fading function).

6.2.4 Evolving data streams

In this subsection, we perform the batchStream algorithm on different data streams ordered
by class labels to demonstrate its effectiveness in clustering evolving data streams (i.e., data
points of the first class arrive in first, then the ones of the second, third, etc. class). In this
case, old concepts (class labels) disappear due to the use of fading function. In the same
time, new concepts (class labels) appear as new data points arrive. Note that the class labels
are not known to the clustering algorithm. We report the results in Fig. 6. The top panel in
Fig. 6 compares the batchStream algorithm, in terms of the accuracy, with (i.e., we sort the
data points based on their class labels) and without ordering of class labels. It shows that
the batchStream algorithm with ordering of classes can find clusters with accuracy values as
comparable to those without ordering of classes. The middle panel in Fig. 6 compares the

@ Springer

858 Mach Learn (2017) 106:837-862

Accuracy
batchStream
1 M classes ordred ® without ordering
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
o [| |
2 &
O '& ¥ Q Q\Q é’o
& & <&
¢ S
NMI
batchStream
0,8 M classes ordred ® without ordering
0,7
0,6
0,5
0,4
0,3
0,2
il il
0
2 £
& & & Q q\‘? &
& bbg < i
+ &
Rand index
batchStream
M classes ordred m without ordering
1
0,8
0,6
0,4

0

~

0 I| || II II II |I
>

> s
& 2 & &
0 \é‘) bs?Q < é\“\ ‘,é\
¢ S

Fig. 6 Accuracy, NMI and Rand index for batchStream with and without ordering of classes

@ Springer

Mach Learn (2017) 106:837-862 859

batchStream

30000

25000
)
O
"
© 20000
g —Batch size: 1M
== 15000
‘; ——Batch size: 5M
o
= ——Batch size: 10M
S 10000
O
x
w

5000

1 4 7 10131619 22 2528 31 34 37 40 43 46 49 52 55 58 61 64 67

Fig. 7 The overall execution time of batchStream as a function of window length (batch size)

batchStream algorithm, in terms of the NMI. It has an analogous performance for NMI as
for accuracy for most datasets. Although, we observe that the values of NMI are lower in the
case where we sort the data points based on their class labels, for the DS1 and the KddCup99
datasets. The bottom panel in Fig. 6 compares the batchStream algorithm, in terms of the
Rand index. Except for the KddCup99 dataset where the Rand index value decreases in the
case where the data points are sorted, this figure shows that the batchStream algorithm with
ordering of classes can find clusters with Rand index values comparable to those without
ordering of classes for most datasets. This illustrates the robustness of our algorithm with
respect to new classes (the drift concept). We obtain for each measure slightly lower results.
This proves the adaptability of our algorithm in the presence of drifts. Dealing with drift
concept in data stream is very important because drifts may reflect new trends or a change
in the distribution of data (in our case, new clusters).

6.2.5 Temporal performance versus batch interval

Spark Streaming uses the concept of micro-batch streaming, i.e., it aggregates the data arriving
within a batch interval and, at the end of the time interval, it applies the MapReduce operation
on the batch data. MapReduce operations are parallel functions that run on distributed data.
Thus, the longer the batch interval (the window length) is, the more distributed data to treat,
the more the parallelization is effective. However, in real-world applications, longer batch
intervals may cause high latency. Figure 7 shows the execution time of batchStream for the
insurance dataset (this dataset is described in Sect. 6.1) while varying the length of the batch
interval. To do this, we simulated the insurance dataset as a data stream. The source generating
the data stream takes the batch-size, as parameter and then ingests batch-size input data each
time. The batch sizes used in this experiments are: 1 million, 5, and 10 millions of input data.
Figure 7 shows the overall time execution (including the delay time) of the last batches. It
shows that the larger batch size is, the lower the time execution is taken by the batchStream
algorithm.

@ Springer

860 Mach Learn (2017) 106:837-862

7 Conclusion

In this paper, we have narrated a success story of Big Data through a real application. We
have learned a lot from this experience by showing that Big Data should be handled by
different specialized communities from the database, knowledge reasoning and machine
learning fields. We have implemented a platform including a set of models, algorithms,
benchmarks for collecting the heterogeneous data, processing the fusion, the analysis, the
clustering and finally the visualization.

First, we presented the architecture of the proposed Big Data framework. Then, in order to
provide a semantic reasoning by inferring new hidden data, all data are represented in RDF,
which are processed in the serialized n-triples format subject-predicate-object. Moreover, the
semantic links are built to connect the RDF data from each data source with the concepts
of an OWL ontology. The fusion process uses those connections to infer semantic relations
(subsumption, equivalence, disjointness, etc.) across the data sources and identify duplicates
of the same real world entities (the owl sameAs relationships). This task is very important
for data analytics using machine learning algorithms.

After that, we presented the distributed algorithm, called batchStream, for scalable clus-
tering data streams. We defined a new cost function taking into account that subsets of
observations arrive in batches. This model consists of decomposing the data stream cluster-
ing problem into the elementary functions, Map and Reduce. Its implementation is assured in
the Spark Streaming platform. Then, we presented our work carried in the context of the Big
Data project, known as Square Predict. We illustrated the utility of the batchStream algorithm
as an unsupervised learning for a real dataset combined with a supervised learning method
(decision trees).

Experimental evaluation over a number of real and synthetic data sets demonstrated the
effectiveness and efficiency of the presented Big Data workflow. The utility of the workflow
as a suite of tools for data analytics has been demonstrated for insurance Big Data.

We plan in the future to extend batchStream to deal with binary, categorical, and mixed
data streams, and also to make our algorithm as autonomous as possible. Also, we envisage to
setup a Lambda Architecture (Marz and Warren 2015) where the batchStream algorithm will
serve as an online layer. Lambda Architecture is a useful framework for designing big data
applications where we can combine the online (or real-time) and offline (or batch) learning
in a single platform. Online and offline learning are mostly considered as mutually exclusive,
but it is their combination that has the potential to enhance the value of data the most.

Acknowledgements This research has been supported by the French Foundation FSN, PIA Grant Big data-
Investissements d’ Avenir. The project is titled “Square Predict” (http://ns209168.ovh.net/squarepredict/).

References

Aggarwal, C. C., Watson, T. J., Ctr, R, Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering
evolving data streams. In VLDB (pp. 8§1-92).

Ailon, N., Jaiswal, R., & Monteleoni, C. (2009). Streaming k-means approximation. In Advances in neural
information processing systems 22: 23rd annual conference on neural information processing systems
2009. Proceedings of a meeting held 7—-10 December 2009, Vancouver, BC (pp. 10-18).

Benbernou, S., Huang, X., & Ouziri, M. (2015). Fusion of Big RDF data: A semantic entity resolution and
query rewriting-based inference approach. In WISE (2) (pp. 300-30).

Blackard, J. A., & Dean, D. J. (1999). Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables. Computers and Electronics in
Agriculture, 24(3), 131-151.

@ Springer

http://ns209168.ovh.net/squarepredict/

Mach Learn (2017) 106:837-862 861

Bolanos, M., Forrest, J., & Hahsler, M. (2014). stream: Infrastructure for Data Stream Mining, r package
version 0.2-0. http://CRAN.R-project.org/package=stream.

Braverman, V., Meyerson, A., Ostrovsky, R., Roytman, A., Shindler, M., & Tagiku, B. (2011). Streaming
k-means on well-clusterable data. In Proceedings of the twenty-second annual ACM-SIAM symposium
on discrete algorithms, SODA 2011, San Francisco, CA (pp. 26-40).

Cao, F, Ester, M., Qian, W., & Zhou, A. (2006). Density-based clustering over an evolving data stream with
noise. In SDM (pp. 328-339).

de Andrade Silva, J., Faria, E. R., Barros, R. C., Hruschka, E. R., de Carvalho, A. C., & Gama, J. (2013). Data
stream clustering: A survey. ACM Computing Surveys, 46(1), 13.

Dong, X. L., & Srivastava, D. (2015). Big data integration. Synthesis Lectures on Data Management, 7(1),
1-198.

Demchenko, Y., Grosso, P., De Laat, C., & Membrey, P. (2013). Addressing big data issues in scientific data
infrastructure. In Collaboration technologies and systems (CTS), 2013 international conference on, IEEE
(pp. 48-55).

Endrullis, S., Thor, A., & Rahm, E. (2012). WETSUIT: An efficient mashup tool for searching and fusing web
entities. Proceedings of the VLDB Endowment, 5(12). 1970-1973.

Fernandez, R. C., Migliavacca, M., Kalyvianaki, E., & Pietzuch, P. (2014). Making state explicit for imperative
big data processing. In 2014 USENIX annual technical conference (USENIX ATC 14) (pp. 49-60).
Forestiero, A., Pizzuti, C., & Spezzano, G. (2013). A single pass algorithm for clustering evolving data streams

based on swarm intelligence. Data Mining and Knowledge Discovery, 26(1), 1-26.

Ghesmoune, M., Azzag, H., & Lebbah, M. (2014). G-stream: Growing neural gas over data stream. In Neural
information processing—21st international conference, ICONIP 2014, Kuching, Malaysia. Proceedings,
Part I (pp. 207-214).

Ghesmoune, M., Lebbah, M., & Azzag, H. (2015). Clustering over data streams based on growing neural gas.
In Advances in knowledge discovery and data mining—19th Pacific-Asia conference, PAKDD 2015, Ho
Chi Minh City, Proceedings, Part Il (pp. 134-145).

Goasdoué, F., Kaoudi, Z., Manolescu, 1., Ruiz, J. A. Q., & Zampetakis, S. (2015). CliqueSquare: Flat plans
for massively parallel RDF queries. In 3/st I[EEE international conference on data engineering, ICDE,
Seoul (pp. 771-782).

Gurajada, S., Seufert, S., Miliaraki, I., & Theobald, M. (2014). TriAD: A distributed shared-nothing RDF
engine based on asynchronous message passing. In SIGMOD conference (pp. 289-300).

Halpin, H., Hayes, P., McCusker, J. P., McGuinness, D., & Thompson, H. S. (2010). When owl:sameAs isn’t
the same: An analysis of identity in linked data. In Proceedings of the ISWC.

Hang Du, J., Wang, H., Ni, Y., & Yu, Y. (2012). HadoopRDF: A scalable semantic data analytical engine. In
Intelligent computing theories and applications—S8th international Conference, ICIC 2012, Huangshan,
China. Proceedings (pp. 633-641).

Harbi, R., Abdelaziz, 1., Kalnis, P., & Mamoulis, N. (2015). Evaluating SPARQL queries on massive RDF
datasets. Proceedings of the VLDB Endowment, 8(12), 1848-1859.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference,
and prediction (2nd ed.). New York: Springer.

Isaksson, C., Dunham, M. H., & Hahsler, M. (2012). SOStream: Self organizing density-based clustering over
data stream. In MLDM. (pp. 264-278).

Kohonen, T., Schroeder, M. R., & Huang, T. S. (Eds.). (2001). Self-organizing maps (3rd ed.). Secaucus, NJ:
Springer New York Inc.

Knoblock, C. A., Szekely, P.A., Ambite, J. L., Goel, A., Gupta, S., Lerman, K., et al. (2012). Semi-automatically
Mapping Structured Sources into the Semantic Web. In The Semantic Web: Research and Applications—
9th Extended Semantic Web Conference, ESWC, 2012, Heraklion, Crete.

Kranen, P., Assent, 1., Baldauf, C., & Seidl, T. (2011). The ClusTree: Indexing micro-clusters for anytime
stream mining. Knowledge and Information Systems, 29(2), 249-272.

Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of California, School of
Information and Computer Science.

Madden, S., Franklin, M. J. Hellerstein, J. M., & Hong, W. (2003). The design of an acquisitional query
processor for sensor networks. In Proceedings of the 2003 ACM SIGMOD international conference on
management of data (pp. 491-502). ACM.

Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable realtime data systems.
Manning Publications Co.

Marsland, S., Shapiro, J., & Nehmzow, U. (2002). A self-organising network that grows when required. Neural
Networks, 15(8-9), 1041-1058.

Martinetz, T., & Schulten, K. (1991). A “neural-gas” network learns topologies. Artificial Neural Networks,
1,397-402.

@ Springer

http://CRAN.R-project.org/package=stream

862 Mach Learn (2017) 106:837-862

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., et al. (2016). MLIib: Machine learning
in apache spark. Journal of Machine Learning Research, 17(1), 1235-1241.

Papailiou, N., Tsoumakos, D., Konstantinou, I., Karras, P., & Koziris, N. (2014). HpRDF+: An efficient data
management system for big RDF graphs. In International conference on management of data, SIGMOD
2014, Snowbird, UT (pp. 909-912).

Rand, W. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
Association, 66(336), 846-850.

Shindler, M., Wong, A., & Meyerson, A. (2011). Fast and accurate k-means for large datasets. In Advances
in neural information processing systems 24: 25th annual conference on neural information processing
systems 2011. Proceedings of a meeting held 12—14 December 2011, Granada (pp. 2375-2383).

Sledge, I. J., & Keller, J. M. (2008). Growing neural gas for temporal clustering. In /9th International confer-
ence on pattern recognition (ICPR 2008), Tampa, FL (pp. 1-4).

Stolfo, J. (2000). Cost-based modeling and evaluation for data mining with application to fraud and intrusion
detection. In Results from the JAM Project by Salvatore.

Street, W. N., & Kim, Y. (2001). A streaming ensemble algorithm (SEA) for large-scale classification. In
Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 377-382). ACM.

Strehl, A., & Ghosh, J. (2002). Cluster ensembles—A knowledge reuse framework for combining multiple
partitions. Journal of Machine Learning Research, 3, 583-617.

Subercaze, J., Gravier, C., Chevalier, J., & Laforest, F. (2016). Inferray: Fast in-memory RDF inference.
Proceedings of the VLDB Endowment, 9(6), 468—479.

Therneau, T., Atkinson, B., & Ripley, B. (2015). rpart: Recursive partitioning and regression trees. R package
version 4.1-10. https://CRAN.R-project.org/package=rpart.

Wache, H., Vgele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., & Hbner, S. (2001).
Ontology-based integration of information—A survey of existing approaches. In IJCAI-01 workshop:
Ontologies and information sharing (pp. 108—117).

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., et al. (2012a). Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX
Symposium on networked systems design and implementation, NSDI 2012, San Jose, CA, USA (pp. 15—
28).

Zaharia, M., Das, T., Li, H., Shenker, S., & Stoica, I. (2012b). Discretized streams: An efficient and fault-
tolerant model for stream processing on large clusters. In Proceedings of the 4th USENIX conference on
hot topics in cloud Ccomputing, HotCloud’12 (pp. 10-10).

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: An efficient data clustering method for very large
databases. In SIGMOD conference (pp. 103—-114).

@ Springer

https://CRAN.R-project.org/package=rpart

	Big Data: from collection to visualization
	Abstract
	1 Introduction
	2 Architecture of the Big data framework
	3 Related work
	4 Big data fusion
	4.1 Entity resolution approach
	4.2 MapReduce based query evaluation

	5 Micro-batching clustering
	6 Experimental evaluations
	6.1 Application for insurance Big Data
	6.2 Application for public datasets
	6.2.1 Datasets and quality criteria
	6.2.2 Evaluation and performance comparison
	6.2.3 Visualization of graph creation evolution
	6.2.4 Evolving data streams
	6.2.5 Temporal performance versus batch interval

	7 Conclusion
	Acknowledgements
	References

