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a b s t r a c t 

Carpooling has the potential to transform itself into a mass transportation mode by abandoning its adherence to 
deterministic passenger-driver matching for door-to-door journeys, and by adopting instead stochastic matching 
on a network of fixed meeting points. Stochastic matching is where a passenger sends out a carpooling request at 
a meeting point, and then waits for the arrival of a self-selected driver who is already travelling to the requested 
meeting point. Crucially there is no centrally dispatched driver. Moreover, the carpooling is assured only between 
the meeting points, so the onus is on the passengers to travel to/from them by their own means. Thus the success 
of a stochastic carpooling service relies on the convergence, with minimal perturbation to their existing travel 
patterns, to the meeting points which are highly frequented by both passengers and drivers. Due to the innovative 
nature of stochastic carpooling, existing off-the-shelf workflows are largely insufficient for this purpose. To fill 
the gap in the market, we introduce a novel workflow, comprising of a combination of data science and GIS 
(Geographic Information Systems), to analyse driver GPS traces. We implement it for an operational stochastic 
carpooling service in south-eastern France, and we demonstrate that relaxing door-to-door matching reduces 
passenger waiting times. Our workflow provides additional key operational indicators, namely the driver flow 

maps, the driver flow temporal profiles and the driver participation rates. 
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. Introduction 

Carpooling has seen an explosion of utilisation in recent years [3] .
here are many underlying reasons for this, with concerns ranging from
reenhouse gas emissions and air pollution to road congestion to land
se, as well as economic costs [11] . It also attracts intense interest since
arpooling is a crucial element of almost all development plans for smart
ities [4] . A broad definition of carpooling involves a driver sharing their
ourney with passengers. In this paper we employ a narrower definition.

e additionally require that a non-professional driver would have un-
ertaken their journey for their own reasons, regardless of whether the
assengers would have been present or not. The driver may receive pay-
ent to offset the costs of the use of their vehicle, but the profit motive

s non-existent or at least not their primary motivation [20] . Hence we
o not consider taxi-like services (such as Uber, Lyft and Kapten etc.) to
e carpooling services as they employ professional drivers who create a
ourney in response to a passenger request and are then paid the market
ate for the service rendered. 
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tating the matching of drivers and passengers [12] . This matching is
anaged by a centralised platform, which we call deterministic matching

ince a known driver is assigned in advance to collect the passenger. This
eterministic matching is highly successful for infrequent, long distance,
re-reserved carpooling journeys, as witnessed by BlaBlaCar’s status as
 unicorn start-up company (a market capitalisation of at least 1000 mil-
ion USD). Despite the success of deterministic passenger-driver match-
ng in this market, attempts to export it other carpooling markets have
ot resulted in the same level of market penetration. This is most no-
able for frequent, short distance journeys (from 10 to 40 km roughly),
hich comprise the bulk of daily home-work commutes, and so carpool-
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ualifiers. The advent of mass carpooling depends crucially on incen-
ivising drivers and passengers to converge onto highly frequented meet-
ng points (hotspots) along their door-to-door journeys [14] . This type of
ncentivisation is well-established for a bus network where passengers
mbark/disembark only at the fixed bus stops. Thus mass carpooling
equires a paradigm shift from considering carpooling as an exclusively
rivate means of transport to a closer alignment to public transport mod-
ls [1] . 

Continuing with the public transport model, the meeting points are
ot defined informally between passengers and drivers, but are decided
n consultation with local government authorities so that they respond to
he mobility requirements in the local area, taking into account various
actors such as aggregated traffic flow, socioeconomic characteristics,
edestrian accessibility, local government regulations, etc. For our pur-
oses, we consider that the identification of the meeting hotspots has
een carried out beforehand. These meeting points are then connected
o each other to define carpooling lines, which have massification po-
ential, like traditional bus lines [8,14] . 

Like a bus service, no pre-reservations are required, as a passenger
akes an ad hoc carpooling request at a meeting point, and this re-

uest for the desired destination is communicated to all passing drivers
n real-time via an electronic sign on the side of a highly frequented
ain road. Unlike for deterministic passenger-driver matching men-

ioned above, a specific driver is not assigned to the passenger by a
entralised platform, but the decision to collect a passenger at the meet-
ng point is made spontaneously by a self-selected driver. Since the ac-
ual driver who collects the passenger is not known deterministically
n advance, but is only known to be drawn from the population of
rivers, this is known as stochastic matching . Due to the inherent vari-
bility of these driver arrivals, stochastic matching is only feasible when
mployed in conjunction with a network of highly frequented meeting
oints. 

The effects of the double innovations of fixed meeting points and
tochastic matching are only sparsely covered by the recent compre-
ensive review of general carpooling and taxi-like services over the past
wo decades [17] . So there are few off-the-shelf workflows which are
uitable for the analysis of the data arising from a stochastic carpooling
ervice. We introduce a data science-GIS workflow which fills this gap
n the market. Its main data source is the GPS traces, and its secondary
ources are the meeting point locations, the origin-destination matrices,
he route finder API and the base maps. Data wrangling/geoprocessing
re then applied to these data sources, with the critical geoprocessing
tep being the topological simplification of the GPS traces onto the car-
ooling network. This topological simplification is essential to be able to
utualise GPS traces which share common arrival times at the meeting
oints. From these simplified GPS traces, we can produce the waiting
imes. The latter allow us to assert that stochastic matching at meeting
oints leads to reduced passenger waiting times in comparison to door-
o-door matching. In addition to the waiting times, other outputs from
his workflow are the driver flow maps, the driver flow profiles, and
he driver participation rates. These additional outputs are obtained at
ow marginal cost but which are important elements for evidence-based
ecision making in a stochastic carpooling service. 

In Section 2 we present the theoretical reasons why door-to-door
atching is insufficient to ensure a regular carpooling service. In

ection 3 we detail our data science-GIS workflow for the analysis of GPS
races. In Section 4 , we apply this workflow to an operational stochastic
arpooling service to produce the passenger waiting times and the other
utputs. We end with some concluding remarks. 

. Door-to-door matching is an obstacle to mass carpooling 

As alluded to in the introduction, door-to-door matching of complete
rajectories from the origin to the destination is a structural obstacle
o the transformation of carpooling to a mass transit service. To illus-
rate the difficulties of passenger-driver matching in space and in time
2 
or door-to-door trajectories, we can represent it with partition of a 3D
ube divided into smaller sub-cubes, where the 𝑥 -axis is the longitude,
he 𝑦 -axis the latitude and the 𝑧 -axis the time, as shown in Fig. 1 . On
he left, there are 9 sub-cubes, where each sub-cube represents the ori-
in/destination of a door-to-door trajectory. The blue sub-cube in the
ower left represents all the trajectories whose origins are, say, within
 5 km radius around a residential neighbourhood between 07:00 and
9:00 on Tuesday, and the green sub-cube the trajectories whose des-
ination are within a 5 km radius of the workplace between 08:00 and
0:00 on Tuesday. So for two trajectories to match spatio-temporally in
 door-to-door sense, they must share the same sub-cube for the origin,
nd similarly for the destination: this condition is met by the 1 pair of
reen and blue sub-cubes among all possible 27 pairs of sub-cubes. On
he right, the conditions for a door-to-door matching are stricter, say
he origin is 1 km within the residential neighbourhood during 07:00 to
7:30, and the destination is 1 km within the workplace during 08:30 to
9:00. This represents 1 pair out of 125 pairs of sub-cubes. Thus stricter
oor-to-door matching leads to fewer drivers being available to share
heir trajectories with passengers. 

To supplement the heuristic observations for door-to-door matching
n Fig. 1 , we demonstrate that the probability that two users (i.e. a driver
nd a passenger) share the same origin and destination at the same time
ecreases rapidly as the spatio-temporal matching conditions become
ore stringent. For the sake of simplicity, we suppose that the origin

nd destination for a driver and a passenger are both represented by
ndependent random variables which are uniform over all sub-cubes in
ig. 1 . Let 𝑈 

d 
O and 𝑈 

d 
D be the origin and destination of a driver, and

ikewise 𝑈 

p 
O , 𝑈 

p 
D for a passenger. These quantities are all uniform random

ariables  ({1 , … , 𝑛 }) where 𝑛 is the number of sub-cubes in Fig. 1 .
hen the probability of a door-to-door match between the driver and
assenger is 𝑝 ( 𝑛 ) = ℙ ( 𝑈 

p 
O = 𝑈 

d 
O , 𝑈 

p 
D = 𝑈 

d 
D ) . Since an exact formula for this

robability is difficult to obtain, we approximate it by a Monte Carlo re-
ampling method. That is, we generate 1000 samples of 𝑈 

p 
O , 𝑈 

d 
O , 𝑈 

p 
D , 𝑈 

d 
D 

nd the probability of a door-to-door match is approximated as 

̂ ( 𝑛 ) = 

1 
1000 

1000 ∑
𝑖 =1 

1 1 1 { 𝑈 

p 
O ,𝑖 = 𝑈 

d 
O ,𝑖 , 𝑈 

p 
D ,𝑖 = 𝑈 

d 
D ,𝑖 } 

here 1 1 1 { ⋅} is the indicator function. Fig. 2 is the graph of the number of
ub-cubes 𝑛 versus the approximate probability of a door-to-door match
̂ ( 𝑛 ) . If there is only 1 sub-cube (i.e. no spatio-temporal constraints) the
robability of a match is 1. This probabilistic certainty decreases rapidly
s the spatio-temporal constraints are added: for 27 sub-cubes, this prob-
bility is 0.6, and for 125 sub-cubes, it falls to 0.2. 

The previous analysis was based on the synthetic uniformly dis-
ributed origins and destinations. For a more realistic example, we anal-
se some data generated by an operational carpooling service. Our ex-
mple is the ‘Lane’ carpooling service ( lanemove.com ) operated by Ecov,
n conjunction with Instant System ( instant-system.com ), since May
018 in the peri-urban regions around Lyon in south-eastern France. Our
ain data source is the GPS traces of drivers, which can be considered

o be a form of crowd-sourced data collection [7] . Passenger GPS traces
re more difficult to obtain, and as we are not able to replicate exactly
he synthetic example of passenger-driver matching above, so we use
oor-to-door matching of driver GPS traces to illustrate the diminish-
ng probabilities. Since these GPS traces provide highly detailed spatio-
emporal information, we are able to determine the number of strict
oor-to-door matches which also pass by two meeting points, as well
s the number of matches when door-to-door matching is relaxed. For
n illustrative example in Fig. 3 , we analyse 121 GPS traces of drivers
ho travelled from the Bourgoin meeting point (solid black circle la-
elled B) to the St-Priest meeting point (solid black circle labelled S) in
he Lane carpooling service during the morning operating hours (06:30
o 09:00) for the work week 2019-11-25 to 2019-12-01. A hierarchical
lustering with complete linkage was carried out on the spatial locations
f these origins and destinations. The dissimilarity matrix used for this
ierarchical clustering is composed of the Euclidean distance between

http://www.lanemove.com
http://www.instant-system.com
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Fig. 1. Spatio-temporal door-to-door match- 
ing fragments the population of mutualisable 
trajectories. (Left) Relaxed matching condi- 
tions. (Right) Restricted matching conditions. 
Blue sub-cube represents the origin (residential 
neighbourhood), green the destination (work- 
place), and trajectories which share the same 
origin and destination sub-cubes are consid- 
ered to be door-to-door matches. 

Fig. 2. Probability of door-to-door matches for uniformly distributed drivers 
and passengers, as a function of the number of sub-cube partition classes. Higher 
number of sub-cubes represent more stringent spatio-temporal matching condi- 
tions. 
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Table 1 

Spatio-temporal door-to-door matching fragments the number of mutualisable 
trajectories in the Bourgoin > St-Priest carpooling line, during its morning op- 
erating hours 06:30–09:00, from 2018-11-25 to 2018-12-01. The first line is the 
door-to-door cluster label and the second line is the number of traces in each 
cluster. 

Door-to-door cluster 1 2 3 4 5 6 7 8 9 Total 

Number of GPS traces 76 15 7 9 4 1 7 1 1 121 
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d  
he 4-vector comprising the (origin longitude, origin latitude, destina-
ion longitude, destination latitude) of each trajectory. This dissimilarity
akes into account both the origin and the destination, but not the in-
ermediate GPS points as these actual route taken is not critical for our
urposes. We cut the dendrogram at ℎ = 6000 to yield 9 spatial clusters.
hese clusters are represented with the different colours. So GPS traces
3 
ith the same colour can be considered as door-to-door matches with
ach other. 

The number of GPS traces per cluster is given in Table 1 : as cluster
 contains 75% of the mutualisable traces, this leaves the other 25%
pread sparsely over the other 8 clusters, fragmenting the supply of the
arpooling trajectories to passengers. 

To quantify the augmentation of the carpooling potential by relax-
ng door-to-door matching, we compare the door-to-door cluster with
he largest cardinality (76 traces) from Table 1 to the number of the tra-
ectories (121 traces) which coincide with this carpooling line regardless
f their true origin and destination. These counts are an empirical equiv-
lent of Fig. 1 : the left corresponds to the 121 meeting point (i.e. relaxed
oor-to-door) matches, whereas the right the 76 door-to-door matches.
Fig. 3. Spatio-temporal door-to-door matching 
fragments the number of mutualisable trajecto- 
ries in an operational stochastic carpooling ser- 
vice. The clusters of GPS traces of door-to-door 
matches are colour coded, with the GPS points 
as the solid circles, and the origins/destinations 
as the solid diamonds. The meeting points are 
the solid black circles, denoted B = Bourgoin, 
S = St-Priest. 
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Fig. 4. Data science-GIS workflow for the anal- 
ysis of driver GPS traces in stochastic carpool- 
ing service. (Left) Spatio-temporal input data 
sources. (Centre) Data wrangling and geopro- 
cessing tasks. (Right) Generated outputs. 
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hus meeting point matching represents an increase of 45 traces or 59%
f the carpooling driver potential due to relaxing door-to-door match-
ng. 

Furthermore, Stiglic et al. [14] and Li et al. [8] provide more com-
lex synthetic models to affirm that meeting points are essential to the
easibility of the mass carpooling services, and assert that it is almost
mpossible for a carpooling service to be based on door-to-door spatio-
emporal matching. 

Whilst these examples demonstrate that incentivising drivers to con-
erge to meeting points, rather than relying on door-to-door matching,
ncreases the potential pool of mutualisable journeys, we have not yet
emonstrated that this leads to reduced waiting times. This would be
traightforward for the synthetic examples but this is not the case for
mpirically observed drivers and passengers journeys. In the next sec-
ion we introduce a general workflow which indeed allows us to confirm
hese reduced waiting times for empirical GPS traces. 

. Data science-GIS workflow for the analysis of GPS traces 

The GPS traces analysis workflow is illustrated in Fig. 4 . The left
ectangle of Fig. 4 contains the main data sources: the GPS traces, the
eeting point locations, the origin-destination matrices, the route finder
PI and the base maps. The first two are supplied in-house by the car-
ooling service provider, the origin-destination matrices are usually sup-
lied by a third party which has carried out a mobility survey (e.g. a
ational statistical agency INSEE [6] ), the route finder API is provided
y a GPS navigation operator (e.g. TomTom [16] ), and the base maps
re accessed from a cartography provider (e.g. OpenStreetMap contrib-
tors [10] ). There are specialised data wrangling techniques specific to
patial databases, known collectively as geoprocessing , and these are car-
ied out, in conjunction with traditional data wrangling, in the central
ectangle. The critical geoprocessing task concerns the topological sim-
lification of the GPS traces onto the carpooling network. Whilst GPS
races are a rich source of information of driver behaviour, they are
oluminous and complex. Our approach is based on network analysis
ools [5] and complexity reduction/harmonisation algorithms [2] . This
opological simplification is essential to be able to mutualise GPS traces
hich share common arrival times at the carpooling meeting points.
nce these GPS traces are in a suitable format, we are able to produce

he required outputs in the right rectangle, namely the predicted wait-
ng times, the driver flow maps, the driver flow temporal profiles and
he driver participation rates. 

.1. Data sources 

Our primary data source are the driver GPS traces. A GPS trace is rep-
esented by an 𝓁-sequence of triplets 𝑿 = {( 𝑋 𝑖 , 𝑌 𝑖 , 𝑇 𝑖 )} 𝓁 𝑖 =1 where ( 𝑋 𝑖 , 𝑌 𝑖 )
re the longitude, latitude coordinates of the GPS sensor at the 𝑖 th times-
amp 𝑇 𝑖 . We have 𝑛 GPS traces 𝑿 1 , … , 𝑿 𝑛 in the data collection period.
he 𝑚 meeting point locations are represented by their GPS coordinates
 1 , … , 𝑴 𝑚 . The origin-destination matrix is such that its ( 𝑗, 𝑘 ) th entry

s the number of journeys from 𝑗 th origin to the 𝑘 th destination. In ad-
4 
ition to the origin-destination matrix, we have the GPS coordinates of
he origins and the destinations. Whilst it is common that they coincide,
his is not required for our workflow. The base maps are graphics files
f maps of the study area, which facilitate the fast and accurate map
endering at any desired scale. 

.2. Data wrangling/geoprocessing 

From the 𝑚 meeting points 𝑴 1 , … , 𝑴 𝑚 , a directed graph is con-
tructed where the meeting points are the nodes, and an edge is drawn
etween the two nodes if carpooling between these two meeting points
s guaranteed by the service provider. Thus a carpooling line is repre-
ented by an acyclic sub-graph with at least two nodes. 

The crucial data wrangling/geoprocessing process applied to the GPS
races is the topological simplification of GPS traces on a carpooling line.
round each of the 𝑚 meeting points, a buffer zone of 1 km radius is
rawn to obtain 𝐵( 𝑴 1 ) , … , 𝐵( 𝑴 𝑚 ) . The intersection of the buffer zones
nd the GPS trace, 𝑿 ∩ 𝐵( 𝑴 1 ) , … , 𝑿 ∩ 𝐵( 𝑴 𝑚 ) , is 𝑚 sub-sequences of the
PS points of 𝑿 . For those meeting points with non-empty intersections,
e consider that the driver is able to collect a passenger at these points
ithout onerous detours. 

This spatial intersection only considers the spatial proximity of the
river to a passenger at a meeting point. For the carpooling to succeed,
hey also need to be in temporal proximity. Among the spatial intersec-
ions 𝑿 ∩ 𝐵( 𝑴 1 ) , … , 𝑿 ∩ 𝐵( 𝑴 𝑚 ) , we examine the corresponding times-
amps and retain only those in a suitably restrained time interval. If
his reduced set of spatio-temporal intersections is non-empty then we
roceed to the last data wrangling/geoprocessing step. 

We compute the closest GPS points in 𝑿 to the meeting points 𝑴 𝑗 ,

s defined by 𝑿 𝑴 𝑗 
= {( 𝑋 𝑘 , 𝑌 𝑘 , 𝑇 𝑘 ) ∶ 𝑘 = argmin 1 ≤ 𝑖 ≤ 𝓁 ‖( 𝑋 𝑖 , 𝑌 𝑖 ) − 𝑴 𝑗 ‖} , 𝑗 =

 , … , 𝑚 . From this closest point 𝑿 𝑴 𝑗 
, we can extract the corresponding

imestamp to be an estimate of the arrival time at the meeting point 𝑴 𝑗 .
s an example, if the meeting points 𝑴 1 , 𝑴 2 form the carpooling line
 𝑴 1 > 𝑴 2 } , and if the GPS trace 𝑿 has well-defined estimated arrival
imes at 𝑴 1 and 𝑴 2 , then we are able to reduce the complexity of the
PS trace. That is the 𝓁 points of 𝑿 can be reduced to the sequence of
 points 

̃
 

(
𝑴 1 , 𝑴 2 

)
= 

{(
𝑋 1 , 𝑌 1 , 𝑇 1 

)
> 𝑿 𝑴 1 

> 𝑿 𝑴 2 
> 

(
𝑋 𝓁 , 𝑌 𝓁 , 𝑇 𝓁 

)}

here ( 𝑋 1 , 𝑌 1 , 𝑇 1 ) is the driver origin and ( 𝑋 𝓁 , 𝑌 𝓁 , 𝑇 𝓁 ) is the driver desti-
ation. With this simplified trace 𝑿̃ ( 𝑴 1 , 𝑴 2 ) , we are still able to deter-
ine if the driver can fulfil a passenger request at a given time on the

arpooling line { 𝑴 1 > 𝑴 2 } . The complex topology of 𝑿 is thus simpli-
ed by retaining a small number of key derived indicators [7] . 

We repeat these data wrangling/geoprocessing steps for all 𝑛 GPS
races. The result is a reduced set of 𝑛̃ GPS traces which correspond to
he driver journeys which closely resemble the spatio-temporal charac-
eristics of the likely passenger requests along the carpooling line. 

.3. Outputs 

For the first output in the workflow in Fig. 4 , if we visualise the
PS traces of the reduced set of 𝑛̃ meeting point matches with the base
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aps, then we obtain a map of the driver flow that matches to the pas-
engers in the carpooling line, as in Fig. 3 . For the second output in
he workflow, suppose that the initial time interval of interest is di-
ided into 𝑛 𝑇 sub-intervals 𝜏𝑗 , 𝑗 = 1 , … , 𝑛 𝑇 since we wish to quantify
he driver flow at a higher temporal resolution. Computing the driver
ows 𝑓 ( 𝜏𝑗 ) , 𝑗 = 1 , … , 𝑛 𝑇 , is straightforward as it only requires an enu-
eration of the simplified GPS traces whose estimated arrival times fall
ithin each sub-interval 𝜏𝑗 . That is, the driver flow for the carpooling

ine { 𝑴 1 > 𝑴 2 } during the time interval 𝜏𝑗 is 

 

(
𝜏𝑗 , 𝑴 1 , 𝑴 2 

)
= # 

{
𝑖 ∶ 𝑿̃ 𝑖 

(
𝑴 1 , 𝑴 2 

)
∈ 𝜏𝑗 , 𝑖 = 1 , ⋯ , ̃𝑛 

}
. (1) 

For the third output in the workflow, let 𝑊 ( 𝑡 ) be the waiting time un-
il the driver arrival for a carpool request made at time 𝑡 . For stochastic
arpooling, since a specific driver is not dispatched to the given pas-
enger, the problem is equivalent to the arrival time of the first driver
rom the population of available drivers. Assuming a Poissonian driver
rrival process, the waiting time and the driver flow are inversely pro-
ortional to each other, 𝑊 ( 𝑡 ) ∝ len ( 𝜏𝑗 )∕ 𝑓 ( 𝜏𝑗 ) where 𝑡 ∈ 𝜏𝑗 and len ( 𝜏𝑗 ) is
he length of the time interval 𝜏𝑗 . For simplicity, we set the constant of
roportionality to 1 as this corresponds to the assumption that all ge-
located drivers are willing to respond to a carpooling request. It is a
easonable assumption that the vast majority of geolocated drivers are
illing to pick up a passenger, according to unpublished evidence sup-
lied by Ecov. Thus for the carpooling line { 𝑴 1 > 𝑴 2 } , the passenger
aiting times for the time interval 𝜏𝑗 , 𝑗 = 1 , … , 𝑛 𝑇 , are 

 ( 𝜏𝑗 , 𝑴 1 , 𝑴 2 ) = len ( 𝜏𝑗 )∕ 𝑓 ( 𝜏𝑗 , 𝑴 1 , 𝑴 2 ) . (2)

For the fourth output in the workflow, the driver participation rate
s 𝑃 = 𝑛 1 ∕ 𝑛 0 where 𝑛 1 is the total number of the drivers who are moti-
ated to carpool in response to a passenger request, and 𝑛 0 is the total
umbers of drivers who undertake journeys in the same geographical
egion as the carpooling service. Both 𝑛 1 and 𝑛 0 are difficult to define
nd to estimate precisely. We propose that 𝑛̃ , calculated above as the
umber of drivers who share their geolocation, to be our proxy for 𝑛 1 ,
s the vast majority of carpooling journeys are assured by drivers who
re willing to share their geolocation. 

To enumerate all 𝑛 0 drivers in the same geographical region as the
arpooling network is difficult since the GPS traces for all drivers are
ot available. Our proxy ( ̃𝑛 0 ) is derived from inferring likely trajecto-
ies from the reference origin-destination matrix. Usually this origin-
estination matrix is provided at the county-level, but this is insuffi-
iently detailed to decide if the drivers match with the meeting points
n the carpooling lines. So we infer likely trajectories. These inferred
ikely trajectories are determined as the fastest route from the origins
county centroids) to the destinations (county centroids) by a route
nder API. We employ a route finder API rather than an explicit model-
ased methodology, e.g. Tang et al. [15] , to infer these most likely
outes. Model-based methods are the product of extensive theoretical
nd empirical work, and these tend to be difficult to access due to their
roprietary nature. They also tend to be limited to dense urban regions,
hich are not the target regions for stochastic carpooling. Thus 𝑛̃ 0 is

he sum of the driver flow from all origin-destination pairs whose likely
rajectories coincide with the carpooling lines. The driver participation
ate for a carpooling line { 𝑴 1 > 𝑴 2 } is 
̃
 = 𝑛̃ ∕ ̃𝑛 0 (3)

here 𝑛̃ = 

∑𝑛 𝑇 
𝑗=1 𝑓 ( 𝜏𝑗 , 𝑴 1 , 𝑴 2 ) from Eq. (1) . 

Since there is no comparable door-to-door carpooling service operat-
ng concurrently with the meeting-point stochastic carpooling service, a
irect comparison of empirical passenger waiting times is not possible.
nstead, we propose an indirect comparison in three stages: (i) extract all
river GPS traces which connect two meeting points in a restrained time
nterval, as the meeting point matches, (ii) extract the largest hierarchi-
al cluster of these GPS traces to serve as the door-to-door matches, and
iii) compute the driver flows using Eq. (1) for both sets of matches, and
hen convert them using Eq. (2) to passenger waiting time predictions. 
5 
In addition to the waiting times as an output, there are also the driver
ow maps, the driver flow temporal profiles, and the driver participation
ates. All these outputs are useful in understanding the transport mix of
he local area as well as the market penetration of the carpooling into
he transport mix. 

. Case study of an operational stochastic carpooling service 

Our case study focuses on the Lane carpooling service introduced ear-
ier. Before we progress further into the data analysis of the driver GPS
races, we describe the operational details of this stochastic carpooling
ervice. The physical meeting points require an integrated infrastructure
o facilitate this real-time stochastic matching, as illustrated in Fig. 5 .
he orange structure on the right functions like a bus shelter to provide
rotection from inclement weather whilst the passenger waits, and a
rominent visual point of reference for drivers on the road. The passen-
er makes a carpooling request on the console (the green device with
 horizontal yellow stripe). This request is displayed on the electronic
ign on the roadside. In this configuration, the electronic sign is located
lose to the meeting point, but this can vary considerably according to
he local geographical characteristics. A driver who wishes to embark
he passenger in response to their request is able to do so safely in the
eserved parking place. 

.1. Topological simplification of GPS traces on a carpooling line 

The schematic diagram of the carpooling lines in the Lane network
s shown on the left of Fig. 6 . The visual similarities of the schematic of
his carpooling service with those associated with bus or train services
s deliberately designed to induce the perception of carpooling as a form
f public transport. There are 5 physical meeting points (Lyon Mermoz,
t-Priest Parc Techno, Aéroport Lyon-St Exupéry, Villefontaine The Vil-
age, and Bourgoin La Grive Sortie 7), denoted by the circles with the
tylised  , which function analogously to bus stops. According to mo-
ility studies in this territory, the coloured lines connect the meeting
oints that have a sufficient driver flow between them to maintain a
arpooling service with stochastic matching. These connected meeting
oints form a carpooling line, analogous to a bus line, where carpooling
s only available between these meeting points. 

This carpooling network is represented as a directed graph, as shown
n the right of Fig. 6 , where each node is a meeting point and the
dge connects two nodes if they form segment of a carpooling line. For
revity, the node labels are abbreviated to the first letter, i.e. L = Lyon
ermoz, S = St-Priest Parc Techno, A = Aéroport Lyon-St Exupéry, V =
illefontaine The Village, and B = Bourgoin La Grive Sortie 7. We focus
n the most frequented carpooling line, that is, the Bourgoin > St-Priest
ine (green line in Fig. 6 ). The topology of the road network ensures
hat most of the journeys from Bourgoin to St-Priest pass also by the
illefontaine meeting point, that is, the B > S carpooling line includes
oth sub-graphs B > S and B > V > S. The period of data collection
s 2019-07-25 (service launch date) to 2020-02-17 (last date for which
onsistent driver GPS traces are available), during the most frequented
ime period (the morning operating hours 06:30-09:00). 

A complete GPS trace 𝑿 is displayed as the sequence of 530 blue cir-
les in Fig. 7 . This GPS trace passes within 1 km of the B, V and S meeting
oint nodes, so its simplified topology consists of the 5-node sequence
origin > B > V > S > destination}, shown as the orange arrows. 

This simplified GPS trace represents a data compression rate of over
9% yet it retains the important information to decide the matching po-
ential of this GPS driver trace with a passenger request on the Bourgoin
 St-Priest carpooling line. In Table 2 is the average data compression

or the 𝑛̃ = 121 GPS traces on the Bourgoin > St-Priest line. The first col-
mn is the average number of GPS points in the complete driver traces
 𝑿 , the second is the average number of GPS points of the simplified
opologies # ̃𝑿 , and the last column is the average data compression rate
1 − # ̃𝑿 ∕# 𝑿 ) . 



P. Papoutsis, S. Fennia, C. Bridon et al. Transportation Engineering 4 (2021) 100061 

Fig. 5. Configuration of a physical meeting 
point for the ‘Lane’ carpooling service. The or- 
ange structure is like a bus shelter. A passen- 
ger notifies potential drivers of their carpool- 
ing request using the console, which is then 
displayed on the roadside electronic sign. A 

driver can safely embark the passenger in the 
reserved parking place. Reproduced with per- 
mission from Ecov. 

Fig. 6. (Left) Schematic diagram of the Lane 
carpooling network, which resembles the geo- 
graphically restrained trajectories of a public 
transport service. Reproduced with permission 
from Ecov. (Right) Carpooling network repre- 
sented as a directed graph. Nodes are the meet- 
ing points, edges connect meeting points when- 
ever a carpooling service between them is as- 
sured. 

Fig. 7. Topological simplification of a GPS 
trace in the Bourgoin > St-Priest carpooling 
line, during its morning operating hours 06:30–
09:00, on 2019-11-28. The complete GPS trace 
are the 530 blue circles; the sequence of five 
nodes, as its simplified topology, are the or- 
ange arrows, and the orange diamonds are the 
origin, carpooling meeting points, destination 
nodes. The meeting points are S = St-Priest, 
V = Villefontaine, and B = Bourgoin. 

Table 2 

Data compression rate on the Bourgoin > St-Priest carpooling line, during the morning operating hours 06:30–09:00, for all driver GPS traces from 

2019-07-25 to 2020-02-17. The first column is the average number of GPS points in the complete driver traces, the second is the average number of 
points of the simplified GPS traces, and the third column is the average data compression rate. 

Line # points in complete GPS traces # points in simplified GPS traces % compression 

B > S 313 5 98.3 

6 
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Fig. 8. Matching on meeting points increases 
the number of driver spatio-temporal matches 
in comparison to door-to-door matching, dur- 
ing a single 30 minute period (08:00-08:30), 
on 2019-11-28. The orange arrows are the 14 
GPS traces which are both meeting point and 
door-to-door, and the blue arrows are the 17 
GPS traces which are meeting point matches 
but not door-to-door match matches. The di- 
amonds are the origin/destination points. The 
solid black circles are the meeting points: S = 
St-Priest, V = Villefontaine, and B = Bourgoin. 
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Fig. 9. Box plots of observed waiting times on the Bourgoin > St-Priest carpool- 
ing line, per 15 minute intervals during the morning operating hours 06:30–
09:00, from 2019-09-02 to 2020-02-17. 
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.2. Driver flow estimation 

Of the 𝑛̃ = 121 GPS traces that follow the Bourgoin > St-Priest car-
ooling line, 31 GPS traces have an arrival time at Bourgoin within
8:00 to 08:30, i.e., a close spatio-temporal match for a passenger re-
uest for a departure at the Bourgoin meeting point between 08:00 and
8:30 am, with a destination at the St-Priest meeting point. Of these 31
PS traces, 17 of them are door-to-door matches (as defined as belong-

ng to the largest door-to-door cluster of GPS traces in Table 1 ). These 17
races are both door-to-door and meeting point matches and their sim-
lified traces are displayed in Fig. 8 as the orange diamonds/arrows. The
implified traces of the remaining 14 meeting point but not door-to-door
atches are the blue diamonds/arrows. The latter represent an 82% in-

rease in the number of drivers (from 17 to 31) who can potentially
espond to a passenger carpooling request on the Bourgoin > St-Priest
ine. 

Table 3 summarises the weekly evolution of the impact of meet-
ng point matching over door-to-door matching. The first set of three
olumns focus on the entire morning operating hours (06:30–09:00)
hereas the second set on the single 30 minute period (08:00–08:30)
s this latter restricted period is a more realistic time frame that poten-
ial passengers are willing to wait for a driver to arrive. The first col-
mn contains the weekly aggregate number of door-to-door matches,
he second the number of meeting point matches, and the third is the
ercentage increase due to meeting point matches, (# meeting point
atches − #door-to-doot-matches)/#door-to-doot-matches. The num-

er of door-to-door matches are enumerated from a similar hierarchical
lustering to that in Table 1 , and the number of meeting point matches
re computed from Eq. (1) . This table demonstrates that the increase in
he driver flow due to meeting point matching is maintained over the
ntire data collection period. 

The simplified GPS traces also allow us to compute the driver flows
or narrower time intervals than the 2.5 hour and 0.5 hour intervals in
able 3 . Following Smith and Demetsky [13] and McShane and Roess
9] that 15 minutes intervals are a suitable choice because the variation
n driver flows for shorter intervals is less stable, Table 4 displays the
verage driver flow for 15 minute intervals during 06:30 to 09:00. For
obustness, we aggregate these driver flows over all weeks in the data
ollection period in applying Eq. (1) since we have increased the intra-
ay temporal resolution. 
7 
.3. Waiting time prediction 

It is straightforward to convert these average driver flows in
able 4 into predicted waiting times using Eq. (2) . Suppose that a pas-
enger makes a carpool request at 08:10 at the Bourgoin meeting point
o travel to St-Priest. The expected waiting time is the length of the inter-
al divided by the average driver flow in the interval 08:00–08:15, i.e.
.5 minutes. Given that we have already established a highly detailed
patio-temporal profile of the average driver flow for a carpooling line
n Table 4 , then the predicted waiting times at the same temporal reso-
ution are shown in Table 5 . 

For the Bourgoin > St-Priest carpooling line from 2019-07-25 to
020-02-17, we observed roughly 1500 carpooling requests with a reli-
bly recorded waiting time. Each box plot in Fig. 9 displays the observed
aiting times each 15 minute interval during the morning opening hours
ith at least one observed waiting time. 

The accuracy of these predicted waiting times with respect to
hese observed ones is illustrated in Fig. 10 . Each box plot dis-
lays the RMSE (Root Mean Squared Error) between the observed
nd the predicted waiting times (from Table 5 ) for each 15 minute
nterval. For all 15 minute intervals, the median RMSE is around
–4 minutes which implies that the predicted waiting times fairly
losely track the observed waiting times. This gives us confidence in
ur method for predicting waiting times in a stochastic carpooling
ervice. 
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Table 3 

Weekly aggregate driver flow increase of meeting point matching compared to door-to-door matching in the Bourgoin 
> St-Priest carpooling line, during the morning operating hours 06:30–09:00, and 08:00–08:30, from 2019-09-02 to 
2020-02-17. The first columns contains the number of door-to-door matches, the second the number of meeting point 
matches, and the third the percentage increase due to the meeting point matches. 

Driver flow (06:30–09:00) Driver flow (08:00–08:30) 

Week # Door-to-door # Meeting point % increase # Door-to-door # Meeting point % increase 

2019W36 54 100 85 18 24 33 

2019W37 67 99 48 20 21 5 

2019W38 81 122 51 20 27 35 

2019W39 72 119 65 20 28 40 

2019W40 43 94 119 9 19 111 

2019W41 48 106 120 12 29 141 

2019W42 50 103 106 18 33 83 

2019W43 30 85 183 11 27 145 

2019W44 43 63 47 9 14 56 

2019W45 48 102 113 14 28 100 

2019W46 41 71 73 12 22 83 

2019W47 60 110 83 15 30 100 

2019W48 76 121 59 17 31 82 

2019W49 58 94 62 19 32 68 

2019W50 47 99 111 5 22 340 

2019W51 82 103 26 21 27 29 

2020W01 12 23 92 4 6 50 

2020W02 53 96 81 14 23 64 

2020W03 63 100 59 14 27 93 

2020W04 74 105 42 16 23 44 

2020W05 55 104 89 16 23 44 

2020W06 44 110 150 14 27 93 

2020W07 57 96 68 13 23 77 

Table 4 

Daily average driver flow on the Bourgoin > St-Priest carpooling line, per 15 minute intervals, during the morning operating hours 06:30–09:00 for a typical day 
from 2019-09-02 to 2020-02-17. 

Driver flow 

Line 06:30–06:45 06:45–07:00 07:00–07:15 07:15–07:30 07:30–07:45 07:45–08:00 08:00–08:45 08:15–08:30 08:30–08:45 08:45–09:00 

B > S 1 1.5 2.5 1.5 3 1.5 2 2 2 1 

Table 5 

Waiting time predictions for a carpool request on the Bourgoin > St-Priest carpooling line, per 15 minute intervals, during the morning operating hours 06:30–09:00 
for a typical day from 2019-09-02 to 2020-02-17. 

Predicted waiting time (min) 

Line 06:30–06:45 06:45–07:00 07:00–07:15 07:15–07:30 07:30–07:45 07:45–08:00 08:00–08:45 08:15–08:30 08:30–08:45 08:45–09:00 

B > S 15.0 10.0 6.0 10 6.0 5.0 7.5 7.5 7.5 15 

Fig. 10. RMSE between the observed and predicted waiting times on the Bour- 
goin > St-Priest carpooling line, per 15 minute intervals during the morning 
operating hours 06:30–09:00, from 2019-09-02 to 2020-02-17. 
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Since there is no comparable operational door-to-door carpooling
ervice to Bourgoin > St-Priest stochastic carpooling line, then it is not
ossible to compare empirical waiting times from each type of carpool-
ng. Our proxy is to compare the predicted waiting times for the door-
o-door matches and the meeting point matches. Since our method for
aiting time prediction is fairly accurate for meeting point matches ac-

ording to Fig. 10 , we reason that it will also yield accurate waiting times
8 
or door-to-door matches. In Table 6 are the predicted waiting times
ased on the weekly aggregate driver flows from Table 3 via Eq. (2) for
oth door-to-door and meeting point matches. For all weeks, we observe
 decrease in the predicted passenger waiting times. From anecdotal
vidence from Ecov, 15 minutes corresponds roughly to the maximum
ime that passengers are willing to wait for a driver to arrive since a pre-
rranged meeting time has not been made. This 15 minute threshold is
xceeded by the door-to-door waiting times for most weeks, whereas
he meeting point matched waiting times are lower than 15 minutes for
ost weeks. 

.4. Driver participation rate estimation 

A key question for the service provider is what driver participation
ate leads to passenger waiting times around 5–10 minutes, as observed
n Fig. 9 ? To respond to this question, we first need to enumerate the
opulation of all drivers on a carpooling line. The county-level origin-
estination matrix of home-work trajectories from the French official
tatistical agency [6] is insufficiently detailed to decide if the drivers
ith these origins-destinations travel on the carpooling lines. So we in-

er likely trajectories, as determined as the fastest route by the TomTom
oute finder API [16] starting on Tuesday 08:00 from the origins (county
entroids) to the destinations (county centroids). A spatial intersection,
imilar to that carried out for the driver GPS traces, is computed to de-
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Table 6 

Weekly predicted passenger waiting times for door-to-door and meeting point matching in the Bourgoin > St-Priest carpooling line, 
during the morning operating hours 06:30–09:00, and 08:00–08:30, from 2019-09-02 to 2020-02-17. The first columns contains the 
predicted waiting times for door-to-door matches, the second for meeting point matches, and the third the percentage decrease due 
to the meeting point matches. 

Predicted waiting time (06:30–09:00) Predicted waiting time (08:00–08:30) 

Week Door-to-door (min) Meeting point (min) % decrease Door-to-door (min) Meeting point (min) % decrease 

2019W36 13.9 7.5 –46 8.3 6.2 –25 

2019W37 11.2 7.6 –32 7.5 7.1 –5 

2019W38 9.3 6.1 –34 7.5 5.6 –26 

2019W39 10.4 6.3 –39 7.5 5.4 –29 

2019W40 17.4 8.0 –54 16.7 7.9 –53 

2019W41 15.6 7.1 –55 12.5 5.2 –59 

2019W42 15.0 7.3 –51 8.3 4.5 –45 

2019W43 25.0 8.8 –65 13.6 5.6 –59 

2019W44 17.4 11.9 –32 16.7 10.7 –36 

2019W45 15.6 7.4 –53 10.7 5.4 –50 

2019W46 18.3 10.6 –42 12.5 6.8 –45 

2019W47 12.5 6.8 –45 10.0 5.0 –50 

2019W48 9.9 6.2 –37 8.8 4.8 –45 

2019W49 12.9 8.0 –38 7.9 4.7 –41 

2019W50 16.0 7.6 –53 30.0 6.8 –77 

2019W51 9.1 7.3 –20 7.1 5.6 –22 

2020W01 14.2 7.8 –45 10.7 6.5 –39 

2020W02 11.9 7.5 –37 10.7 5.6 –48 

2020W03 10.1 7.1 –30 9.4 6.5 –30 

2020W04 13.6 7.2 –47 9.4 6.5 –30 

2020W05 17.0 6.8 –60 10.7 5.6 –48 

2020W06 13.2 7.8 –41 11.5 6.5 –43 

2020W07 53.6 41.7 –22 30.0 30.0 0 

Fig. 11. Likely driver itineraries from the 
TomTom route finder API in the same geo- 
graphical region as the Bourgoin > St-Priest 
carpooling line. The origins and destinations 
(county centroids) are the orange diamonds. 
The solid black circles are the meeting points: 
S = St-Priest, B = Bourgoin. 
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ermine which trajectories pass within 1 km of the carpooling meeting
oints. These trajectories are shown in Fig. 11 . Note that there is no tem-
oral information attached to this origin-destination matrix, but since
hey are home-work trajectories, we suppose that they are effected in
he morning peak hours which matches the time interval of the driver
PS traces. 

If we aggregate the corresponding driver flows in the origin-
estination matrix, then we obtain 𝑛̃ 0 = 3821 drivers whose likely tra-
ectories match the Bourgoin > St-Priest carpooling line. From Table 4 ,
here is a daily average of 𝑛̃ = 20 driver GPS traces between 06:30 and
9:30. This yields an estimated driver participation rate of 𝑃 = 𝑛̃ ∕ ̃𝑛 0 =
 . 52% from Eq. (3) . Even with this low driver participation rate, average
assenger waiting times of 5–10 minutes are observed in Fig. 9 . 

If we were able to increase this low driver participation rate even
odestly (to 1% or 5%), then the predicted passenger waiting times
9 
ould fall substantially, as illustrated in Fig. 12 . In this case, these wait-
ng times would be lower than those of bus lines and approach those of
igh frequency metro/subway train lines. The methods for increasing
river participation, as they lie largely outside of data science, are out
f scope of this paper but are of intense interest to the service provider
18–20] . 

. Conclusions and future work 

Stochastic real-time carpooling services differ from competing ser-
ices which offer deterministic door-to-door matching for complete tra-
ectories. Whilst the latter offer a high level of personal convenience
n highly urbanised regions, door-to-door matching structurally inhibits
ass adoption of carpooling, especially in peri-urban regions. Relax-

ng the strict door-to-door matching , and subsequently implementing
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Fig. 12. Evolution of the predicted passenger waiting time as a function of the 
driver participation rate in the Bourgoin > St-Priest carpooling line, during the 
morning operating hours 06:30–09:00, from 2019-07-25 to 2020-02-17. 
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tochastic meeting point matching, allows for the mutualisation of high
hroughput road segments, and thus removes this obstacle. We intro-
uced a novel data science-GIS workflow for a stochastic carpooling
ervice. The crucial mathematical abstraction in this workflow is to re-
uce the complexity of driver GPS traces to a graph-based topology of
he carpooling network. We illustrated this workflow on an operational
tochastic carpooling service in a peri-urban region in south-eastern
rance. We provided quantitative justifications that the physical meet-
ng points, by facilitating a critical mass of drivers and passengers drawn
rom a much larger geographical area, lead to passenger waiting times
hich are lower than those achieved by door-to-door matching. Our
orkflow is a novel combination of two closely related, but historically

eparate, disciplines of data science and GIS into a single workflow. In
ddition to predicting the passenger waiting times, it is able to deliver
utputs for the driver flow maps, driver flow spatio-temporal profiles,
nd driver participation rates. This workflow forms a solid prototype for
ther workflows to accompany the expansion of stochastic carpooling
ervices to address the mobility requirements in neglected peri-urban
egions in the future. 
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