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ABSTRACT
Carpooling is an integral component in smart carbon-neutral cities,
in particular to facilitate home-work commuting. We study an inno-
vative carpooling service which offers stochastic passenger-driver
matching. Stochastic matching is when a passenger makes a car-
pooling request, and then waits for the first driver from a population
of drivers who are already en route. Crucially a designated driver is
not assigned as in a traditional carpooling service. For this new form
of stochastic carpooling, we propose a two-stage Bayesian hierar-
chical model to predict the driver flow and the passenger waiting
times. The first stage focuses on prediction of the aggregated daily
driver flows, and the second stage processes these daily driver flow
into hourly predictions of the passenger waiting times. We demon-
strate, for an operational carpooling service, that the predictions
from our Bayesian hierarchical model outperform the predictions
froma frequentistmodel and a Bayesian non-hierarchicalmodel. The
inferences from our proposed model provide insights for the service
operator in their evidence-based decision making.
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1. Introduction

Providing ecologically sustainable transportation that is accessible for all is one of themajor
challenges in the transition to post-carbon societies. A key component of the solution is
carpooling services which cater to the mobility requirements in marginalised peri-urban
regionswith sparser population and physical/digital infrastructure. These carpooling lines,
which closely resemble traditional bus lines, connect the physicalmeeting points for drivers
and passengers. The meeting points are placed strategically in highly frequented areas,
which take into account various factors such as aggregated trafficflow, socioeconomic char-
acteristics, pedestrian accessibility, local government regulations, etc. This concentrates the
demand and the supply of carpooling so that they can reach a critical mass more quickly
and more sustainably. These meeting points are where the passenger makes a carpooling
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request on an electronic console. Since a driver is not allocated in advance, this request is
then displayed on a electronic sign on the roadside which informs all passing drivers of
a passenger request to the specified destination. This is a real-time, stochastic matching
between a passenger and a flow of potential drivers. This new type of passenger-driver
matching, along with the aggregating effects of the highly frequented physical meeting
points, enables carpooling to reach economical feasibility in peri-urban regions.

From a mathematical and technological point-of-view, it is vastly more difficult to pro-
vide a reliable waiting time of a driver arrival in stochastic matching than in deterministic
matching. In the latter, a reliable waiting time requires only the tracking of a single assigned
driver, whereas stochastic matching requires a more comprehensive understanding of the
general driver flow. To assist in the construction of this understanding, the service oper-
ator can incentivise drivers to share their GPS locations in real-time. We focus on how
to predict the driver flows and passenger waiting times from these GPS traces, which can
be considered to be a form of crowd-sourced data collection [13]. Due to the novelty of
stochastic carpooling, there is a scarcity of empirically verified predictive models, apart
from simple frequentist approaches [16,17]. We propose a more sophisticated Bayesian
hierarchical approach where we first build predictive models of the potential driver flow
from the observed GPS driver traces, and which are subsequently employed to predict the
passenger waiting times. At the time when a passenger request is made, we model this
instantaneous driver flow as a moving average of previous driver flows. Then wemodel the
passenger waiting time as a regression with covariates based on the driver traffic flow from
the first stage. Our objective is to construct a Bayesian two-stage hierarchical model which
is able to predict well the daily driver flows and the hourly passenger waiting times.

The empirical data in this paper are extracted from the ‘Lane’ stochastic carpooling
service (www.lanemove.com), operated by the carpooling provider Ecov (www.ecov.fr),
in conjunction with Instant System (www.instant-system.com), in a peri-urban region in
south-eastern France. See Papoutsis et al. [16] for more details on its set-up. The data col-
lection period is the 382 days from 2018-05-15 (service launch) to 2019-05-31 (beginning
of the following year’s summer holiday season in France). The daily driver flows in the Lane
network are presented in Figure 1, where we enumerate each driver GPS trace, rather than
each unique driver. The ordinaryweekdays (ORD) are in orange, the school holidays (SCH)
in green, and the public holidays/weekends (PWE) in blue. The classic temporal cycles of
driver flow data indicate that a moving average is a relevant approach for prediction.

The passenger waiting times cover the period from 2019-07-25 to 2020-02-17. This
range of dates is different to those for the driver GPS traces above since, due to opera-
tional technical difficulties, the passenger waiting times were not reliably recorded from
2018-05-15 until 2019-10-21, so these dates are excluded from the analysis. In Figure 2
are the (approximately) 1500 observed passenger waiting times aggregated for each day.
The Lane service is guaranteed only for ordinary weekdays, and whilst the passengers
and drivers are not prevented from using the service on other days, there are far fewer
carpooling requests on school holiday weekdays and no requests on public holidays/
weekends.

In Section 2, we describe the two stages of the Bayesian hierarchical model for the daily
driver traffic flow and the hourly passenger waiting times. In Section 3, we carry out a vali-
dation of the proposedmodel with simulated data. In Section 4we apply it to empirical data
drawn from an operational carpooling service, and compare the predictions of driver and

http://www.lanemove.com
http://www.ecov.fr
http://www.instant-system.com
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Figure 1. Daily driver flow in the Lane carpooling service, from 2018-05-15 to 2019-05-31. The ordinary
weekdays (ORD) are in orange, the school holidays (SCH) in green and the public holidays/weekend days
(PWE) in blue.

Figure 2. Passengerwaiting times (inminutes) in the Lane carpooling service from 2019-10-22 to 2020-
01-15. The ordinary work days (ORD) are in orange, and the school holidays (SCH) in green.

passenger behaviour with those from frequentist and Bayesian non-hierarchical models.
We end with some concluding remarks.

2. Bayesian hierarchical modelling of driver flow and passenger waiting
times

As the driver flow and the passengerwaiting time are fundamental quantities in transporta-
tion research, their estimation and prediction are the subject of a vast field of active research
so we cite only a few references. Historically the simplest models for the driver flow are the
moving window averages [18]. More advanced methods draw from time series analysis,
within a frequentist [5] or a Bayesian framework [9] have been posited. Established meth-
ods for waiting time prediction for stochastic carpooling tend to be frequentist approaches
[16,17].

Due to the hierarchical relationship between the driver flows and the passenger waiting
times in a stochastic carpooling service, it is natural to consider nested hierarchicalmodels.
A general introduction to hierarchical models is provided in Gelman [7] and Gelman and
Hill [8]. Hierarchical models can be implemented with frequentist approaches, though we
cite only industrial applications using Bayesian approaches here, e.g. image analysis learn-
ing [14], football results prediction [1] and electricity load forecasting [20]. Within the
transport sector, examples include traffic accident prediction [4] and traffic flowmodelling
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Figure 3. Flowchart of Bayesian hierarchical model for driver flow and passenger waiting time predic-
tion. The inputdata (driverGPS traces) are ingrey, thehierarchicalmodels ingreen, themodelparameters
in orange, and the model outputs in purple.

[21]. These latter approaches do not combine the driver traffic flow and the passenger wait-
ing times and do not analyse data with differing time scales in the different stages in the
hierarchical model, as we propose.

Our proposed Bayesianmulti-level hierarchicalmodel is composed of two nested stages,
as illustrated in the flowchart in Figure 3. The input data (driver GPS traces) are prepro-
cessed, as outlined in Appendix A.1, so that they are suitable as input into the hierarchical
models. The first model is a multi-level moving average model. It combines the robust-
ness and simplicity of moving averages with the targeted adjustments of the multi-level
coefficients [9,18]. The coefficient θθθ in this moving average model depends on the day
types [2,12], and so the number of components of θθθ depends on the number of differ-
ent day types considered. The output from the first hierarchical model is the daily driver
flow, which is the immediate input into the second hierarchical model. The latter is a
Gamma regression, whose regression coefficient βββ has S components, with βs ∈ (0, 1)
for s = 1, . . . , S, for each of the S time intervals of a 24-hour period. The role of βββ is
to assign the daily traffic flow to these sub-daily time intervals. The output of this sec-
ond hierarchical model is the temporal profile of the passenger waiting times www ∈ R

S+ for
these sub-daily time intervals. The scarcity of the driver GPS traces allows us to model
the driver flow robustly only at a daily level, whereas a higher temporal resolution of the
output passenger waiting times is required for a carpooling service. Bayesian hierarchical
models offer an intuitive treatment of these differing temporal resolutions within a single
workflow.

2.1. Multi-level moving average for driver flows

From a visual inspection of the daily driver flows in Figure 1, a standard moving average
which ignores the day types would be unable to account for the abrupt differences in the
driver flow when consecutive days are of different day types. Let the day type function of
day i be

DT(i) =

⎧⎪⎨
⎪⎩
ORD if day i is an ordinary workday
SCH if day i is a school holiday
PWE if day i is a public holiday or a weekend

(1)
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where i = 1, . . . ,N. Thus a suitable Kth order recurrence relation of the daily driver flow
yi, for i ≥ K ≥ 1, satisfies

yi = αDT(i)

K∑
k=1

ηDT(i−k)yi−k + εi (2)

where αDT(·) is the coefficient for the current day i, ηDT(·) = 1{DT(·) = ORD} +
ηSCH1{DT(·) = SCH} + ηPWE1{DT(·) = PWE} are the coefficients for the past K driver
flows, and {εi} are a sequence of independent normal random variables N (0, σ 2

ε ). To
ensure the identifiability of ηDT(·), without loss of generality, we set ηORD = 1 for all days.

The model in Equation (2) has a moving average structure of order K, but with two
additional multi-level coefficients that make the average adaptive to the day types for the
current day i and the previousK days. Themulti-level coefficients ηDT(·) allows us tomodel
the current driver conditioned on the previous day types, whereas the multi-level coeffi-
cients αDT(·) re-scale these flows conditioned on the current day type. For example, if day
i is a school holiday, then the right hand side of Equation (2) is

αSCH

K∑
k=1

[1{DT(i− k) = ORD} + ηSCH1{DT(i− k) = SCH}

+ ηPWE1{DT(i− k) = PWE}]yi−k. (3)

In the summandof Equation (3), the day type functions allowus to sumover theK previous
days, even if they are of different types. If a previous day is a work day, then its contribu-
tion to the current driver flow is αSCHyi−k; if a previous day is a school holiday then it is
αSCH ηSCHyi−k; if a previous day is a public holiday/weekend then it is αSCHηPWEyi−k.

Our model in Equation (2) possesses a similar structure to an autoregressive model,
though it does not strictly satisfy the definition of the latter. It cannot be definedwith a back
shift operator due to the action of themulti-level coefficientsαDT(·) and ηDT(·), and the pro-
cess {yi ∈ [0,∞), i = 1, 2, . . . } is non-stationary due to the drift in the driver participation
rate after the launch of the carpooling service.

Let θθθ = (αORD,αSCH,αPWE, ηORD, ηSCH, ηPWE, σ 2
ε ), where we fix ηORD = 1 identically,

and have αORD,αSCH,αPWE, ηSCH, ηPWE ∈ (0, 1) and σ 2
ε ∈ R+. Let theN days of observed

daily driver flows be yi, i = 1, . . . ,N, where N>K. Since the error variables are indepen-
dent Gaussian random variables, then the conditional likelihood ofyyy = (yK , yK+1, . . . , yN)

is

L(yyy|θθθ) = 1
(2πσ 2

ε )(N−K+1)/2
exp

[
− 1
2σ 2

ε

N∑
i=K

(yi − gi(θθθ))2

]

where gi(θθθ) = αDT(i)
∑K

k=1 ηDT(i−k)yi−k. This conditional likelihood is formed by the
product of the conditional densities of yi, given yi−K , . . . , yi−1, for i = K + 1, . . . ,N.

In Bayesian analysis, the parameter of interest θθθ is a random variable, and its prior dis-
tribution π represents our belief in its uncertainty. The posterior density π(θθθ |yyy) represents
an update of the prior distribution by taking into account the observed data. In our case,
we do not have access to existing knowledge that would provide an informative prior and
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thus we form a non-informative prior on θθθ , i.e. π(θθθ) ∝ σ−2ε [3, Chapter 1]. This leads to
the following posterior distribution

π(θθθ |yyy) ∝ L(yyy|θθθ)π(θθθ) ∝ 1
σN−K+1

ε

exp

[
− 1
2σ 2

ε

N∑
i=K

(yi − gi(θθθ))2

]
. (4)

For the inference on θθθ , Monte Carlo approximations are required since the posterior dis-
tribution (and its moments, quantiles etc.) cannot be calculated explicitly. Themost widely
used family of methods is the Monte Carlo Markov Chain (MCMC) which generates
a Markov Chain {θθθ0,θθθ1, . . . } whose equilibrium distribution converges to the posterior
distribution π(θθθ |yyy).

The next stage is to predict a driver flow ỹ in the future from the observed past driver
flows yyy. Bayesian prediction is based on the posterior predictive distribution of ỹ|yyy. Its
density p(ỹ|yyy) is given by

p(ỹ|yyy) =
∫

	

p(ỹ|θθθ ,yyy)π(θθθ |yyy) dθθθ (5)

where 	 = (0, 1)5 ×R+. Since p(ỹ|yyy) is a compound probability distribution, we can
simulate samples from this predictive distribution.

For the choice of anMCMC sampler, we use the NUT sampler [11], which is the default
in the pyStan Python package (https://pystan.readthedocs.io). This package is an inter-
face to the state-of-art platform for Bayesian computations Stan (https://mc-stan.org). To
carry out the integration and then a random draw from the posterior predictive distribu-
tion of daily driver flows p(ỹ|yyy) in Equation (4), we are only required to input the prior
π(θθθ), the likelihood L(yyy|θθθ) and the recurrence relation which generates the vector of sim-
ulated driver flows yyy (Algorithm 2 in Appendix A.2) into pyStan. The latter automatically
simulates for the jth iteration, j = 1, . . . , J,

ỹyy(j) =

⎡
⎢⎣
ỹ(j,1)

...
ỹ(j,N)

⎤
⎥⎦ ∼

⎡
⎢⎣
p(ỹ(j,1)|yyy)

...
p(ỹ(j,N)|yyy)

⎤
⎥⎦ , (6)

and its final output is the sequence of posterior prediction vectors Ỹ = {ỹyy(1), . . . , ỹyy(J)}.

2.2. Gamma regression for passenger waiting times

For simplicity, we assume that a passenger can only make one request at a time for them-
selves only at a carpooling meeting point, and the drivers can embark only one passenger
in their vehicle in the order that the passenger requests are made. For day i, let yi be the
daily traffic flow, and that ni passengersmake carpooling requests at times ti,1 < · · · < ti,ni .
Let t′i,j be the driver arrival time for the passenger request at time ti,j, i = 1, . . . ,N and
j = 1, . . . , ni. The perceived waiting time w∗i,j and the pseudo waiting time wi,j for the

https://pystan.readthedocs.io
https://mc-stan.org
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passenger request at time ti,j are

w∗i,j = t′i,j − ti,j

wi,j = t′i,j −max(ti,j, t′i,j−1)

with the convention t′i,0 = ti,1 for the first passenger on day i. Figure 4 illustrates the dif-
ference between the perceived and the pseudo waiting times for two passengers A, B who
are both not the first passenger of the day. Passenger A arrives first and is the jth passenger
of day i, and makes a carpooling request at time ti,j. Passenger B arrives immediately after-
wards and is the (j+ 1)th passenger with request time ti,j+1. Suppose that there are at least
two drivers en route to embark these passengers, and they have not received any passenger
requests before passenger A’s request. The first driver arrives at t′i,j > ti,j+1 (i.e. after pas-
senger B’s request time) and the second driver at t′i,j+1 > t′i,j. The perceived waiting time
for the passenger A is w∗i,j = t′i,j − ti,j (the blue brace in Figure 4) and for the passenger B
it is w∗i,j+1 = t′i,j+1 − ti,j+1 (the green brace). The pseudo waiting time for passenger A is
wi,j = w∗i,j (the blue brace) since they are at the front of the queue, and for passenger B it is
wi,j+1 = t′i,j+1 − t′i,j (the grey brace). The pseudo waiting time wi,j+1 for passenger B is the
difference between their departure time and the departure time of the previous passenger
A, and this is shorter than the perceived waiting time w∗i,j+1.

From Figure 4, we observe that the perceived the waiting times w∗i,j and w∗i,j+1 for pas-
sengers A and B overlap, whereas the pseudowaiting timeswi,j andwi,j+1 do not overlap by
construction. The overlapping nature of the interval processes that determine the perceived
waiting times renders the problem of their unconditional prediction to be non-identifiable.
Thus we focus on the pseudowaiting times, andwewish to formulate sub-daily predictions
of them.

Figure 4. Perceived and pseudo waiting times for the case of two passengers at a carpooling meeting
point. Passenger A is at the head of the queue so their perceived waiting time (blue brace) coincides
with their pseudo waiting time. For passenger B, their pseudo waiting time (grey brace) is the differ-
ence between their departure time and the departure time of passenger A, which is shorter than their
perceived waiting time (green brace).
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2.2.1. Modelling for pseudowaiting times
Let the 24 hour period of a day be divided into S equal intervals I1 < · · · < IS. The frac-
tion of the daily driver flow yi on each interval Is, s = 1, . . . , S is yiβs, where βs ≥ 0 and∑S

s=1 βs = 1. Conditional on the traffic flow yi and the passenger request times ti,j ∈ Is,
we suppose that the pseudo waiting times wi,j are independent Gamma random variables
with parameters ν and βsyi, i.e.

wi,j|(yi,βββ , ti,j ∈ Is) ∼ �(ν,βsyi) (7)

for i = 1 . . .N and j = 1, . . . , ni. This Gamma regression model assumes that the pseudo
waiting times depend on the time of day and on the daily driver flow. Furthermore, it
ensures that the conditional mean pseudo waiting time is

E[wi,j|(yi,βββ , ti,j ∈ Is)] = ν

βsyi

which is consistent with our intuition of the inverse relationship between the driver flow
and the waiting time. Since βββ is constant for all i, then the model assumes that the relative
proportions of the driver flow in the intervals I1, . . . , IS remain unchanged for all aggregate
daily driver flows.

A Dirichlet distribution is a natural choice as a prior distribution on the coeffi-
cients βββ : βββ ∼ Dir(S,ααα) where ααα = (α1, . . . ,αS) are the concentration parameters, since it
imposes the constraint

∑S
s=1 βs = 1 on the coefficients. The corresponding Dirichlet den-

sity is p(βββ) = [
∏S

s=1 β
αs−1
s ]/B(ααα) where B(ααα) =∏S

s=1 �(αs)
/
�(

∑S
s=1 αs) and �(x) =∫∞

0 ux−1e−u du. Theβββ vector allows us to rebuild the temporal distribution of the sub-daily
traffic flow from an aggregated daily driver flow.

Let ttti = (ti,1, . . . , ti,ni) be the vector of the ni observed passenger carpooling request
times for the day i ∈ {1, . . . ,N}, and ttt = (ttt1, . . . , tttN) be all observed passenger carpooling
request times. Likewise for the passenger pseudo waiting times wwwi for day i, and www for
all days. Let yyy = (y1, . . . , yN) be the observed driver flows for all days. It is reasonable to
assume that the waiting times are mutually independent given (βββ ,yyy, ttt). The conditional
likelihood of the pseudo waiting times is thus given by the joint density ofwww given (βββ ,yyy, ttt)

L(www|βββ ,yyy, ttt) =
N∏
i=1

p(wwwi|βββ ,yyy, ttt) =
N∏
i=1

p(wwwi|βββ , yi, ttti)

since p(wwwi|βββ , yi, ttti) =
∏S

s=1
∏
{j:ti,j∈Is}(βsyi)νwν−1

i,j exp(−βsyiwi,j)/�(ν). Then we obtain
the posterior density of βββ , using a non-informative prior on βββ , as

π(βββ|yyy, ttt,www) ∝
N∏
i=1

S∏
s=1

∏
{j:ti,j∈Is}

(βsyi)ν

�(ν)
wν−1
i,j exp(−βsyiwi,j)1{βββ ∈ R

S
+}.

Let w̃s be the pseudo waiting time for a future day for a passenger who makes a carpooling
request in the time interval Is. If we observe a new daily driver flow ỹ on this future day,
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then the posterior predictive distribution of the waiting time w̃s is

p(w̃s|ỹ,yyy,www) =
∫ 1

0
p(w̃s|ỹ,βs)π(βs|yyy,www, ttt) dβs, (8)

which is then collated into an S-vector (p(w̃1|ỹ,yyy,www), . . . , p(w̃S|ỹ,yyy,www)) for all time inter-
vals I1, . . . , IS.

To carry out the integration and then a random draw from the posterior predictive
distribution of p(w̃s|ỹ,yyy,www) in Equation (8), we are only required to input the posterior
predicted value of the driver flow ỹ Equation (5), the recurrence relation which generates
the vector of simulated driver flows yyy (Algorithm 2 in Appendix A.2), and the recur-
rence relation which generates the vector of simulated passenger pseudo waiting times www
(Algorithm 3 in Appendix A.2) into pyStan. The latter automatically simulates this N × S
matrix distribution, for the jth iteration, j = 1, . . . , J,

W̃WW(j) =

⎡
⎢⎢⎣
w̃(j)
1,1 . . . w̃(j)

1,S
...

...
w̃(j)
1,N . . . w̃(j)

N,S

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣
p(w̃(j,1)

1 |ỹ,yyy,www) . . . p(w̃(j,1)
S |ỹ,yyy,www)

...
...

p(w̃(j,N)

1 |ỹ,yyy,www) . . . p(w̃(j,N)

S |ỹ,yyy,www)

⎤
⎥⎥⎦

and its final output is the sequence of posterior predictionmatricesW̃={W̃̃W̃W(1), . . . , W̃̃W̃W(J))}.

2.2.2. Modelling for perceivedwaiting times
As for now, we have focused on the pseudo waiting times wi,j, though for the applications
the perceived waiting times w∗i,j are more pertinent, since the latter are the true waiting
times from the passenger point-of-view. The current set-up of the Lane carpooling service
is not able to collect reliable perceived waiting times since the passenger arrivals are not
reliably tracked. Also, as alluded to earlier, the unconditional prediction of the perceived
waiting times is a non-identifiable problem.

However, we can provide a framework for their analysis based on conditioning on sim-
ulated passenger arrival processes. Since the complete posterior predictive distribution in
Equation (8) is available, we can integrate it with respect to the passenger arrival distri-
bution to obtain the pseudo waiting time distribution. Then we are able to reconstruct the
perceivedwaiting times usingw∗i,j+1 = wi,j+1 + [wi,j − ζi|(wi,j > ζi)] with ζi = ti,j+1 − ti,j.
Let the passenger arrivals be a Poisson process, for t>0, N(t) = max{n :

∑n
k=0 Ak ≤ t}

where N(0) = 0, A0 = 0, and Ak ∼ E(λ) and λ > 0 are independent exponential random
variables. The parameter λ is the rate of the passenger arrivals, and it measures the mean
number of arrivals over a unit of time. An application of this methodology is given in
Section 4.3.

3. Model validation with simulated pseudo waiting times

We choose parameter values to produce simulated data which are comparable to those
observed in the Lane carpooling service. We set the initial day i = 1 to be 2018-01-01,
and the weekdays (ORD), school holidays (SCH) and public holidays/weekends (PWE) to
be those observed in south-eastern France. For the simulation algorithms, the number of
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days is N = 365, the day types coefficients are θθθ = (0.333, 0.33, 0.331, 1, 1, 1), the autore-
gression order is K = 3, the error variance is σ 2

ε = 5, the 24 hour period is divided in
S = 8 equal intervals of 3 hours, the first Gamma shape parameter is ν = 7, the Gamma
regression parameters are βββ = (0.012, 0.01, 0.011, 0.013, 0.018, 0.016, 0.017, 0.019), and
the number of replicates (waiting times per time interval) is J = 10.

We generate one simulated data set of N = 365 days, each with one daily driver flow
yi, i = 1, . . . ,N (Algorithm 2), and J = 10 passenger pseudo waiting time N × Smatrices
W = {WWW(1), . . . ,WWW(J)} (Algorithm 3), and the corresponding N × S posterior prediction
matrices W̃ = {W̃WW(1), . . . ,W̃WW(J)}. The data from these N = 365 days from 2018-01-01 to
2018-12-31 form the reference training data set. With the same parameters, we simu-
late a further Ñ = 5 days (2019-01-01 to 2019-01-05) as the oracle test data set of Ñ × S
matrices Wtest = {WWW(1)

test, . . . ,WWW
(J)
test}. Furthermore, from the training data only, for these

same extra Ñ days, we generate the corresponding Ñ × S posterior prediction matrices
W̃test = {W̃WW(1)

test, . . . ,W̃WW
(J)
test}. For brevity we have omitted the comparison of the driver flows

and focus on the passenger waiting times for these simulated data: we make a more thor-
ough comparison of both driver flows and passenger waiting times for the empirical data
in the sequel.

From a passenger point of view, whilst themagnitude of the waiting times are important
as a perception of the service quality, it is equally important that these posterior predicted
waiting times be as close to the observed ones, whatever their magnitude. For example,
suppose that a driver arrives 12 minutes after a passenger makes a carpooling request. In
this case, a prediction of 15 minutes is better than 5 minutes since the former is closer to
the observed waiting time than the latter (which is too optimistic). Therefore we propose
the following metric to measure these discrepancies for a given threshold δ:

PE(W, W̃; δ) = 1
JÑS

Ñ∑
i=1

S∑
s=1

J∑
j=1

1{| ¯̃wi,s − w(j)
i,s | < δ} (9)

where ¯̃wi,s = 1
J
∑J

j=1 w̃
(j,i)
s is themean of the posterior predicted waiting times distribution

for day i, and time interval Is.
We focus on the temporal profiles, over the S = 8 periods of a day, of the waiting times.

In Figure 5 are the quantiles of the waiting times for all time intervals Is, s = 1, . . . , 8, for all
days i = 1, . . . , Ñ in the test phase. The grey box plots are of the observations Wtest,i,s and
the light, medium and dark purple circles superimposed over the box plots are the 50%,
75%, 95% quantiles of the posterior predictions W̃test,i,s. For operational purposes, short
term prediction for the comingweek is sufficient, and this is verified by the close agreement
of the quantiles of the posterior predicted pseudo waiting times with their observed values
for all Ñ = 5 prediction days. The advantage of an MCMC approach here is that we are
able to reproduce the entire sampling distribution of the predicted waiting times, which is
more comprehensive than point or interval predictions.

The PEmetric from Equation (9), as a function of δ, illustrated in Figure 6, during both
the training phase PE(W, W̃; δ) (blue curve) and the test phase PE(Wtest, W̃test; δ) (red
curve). The test predictions are more accurate than the training predictions for small val-
ues of δ < 4 minutes since red PE curve is above the blue PE curve in this interval. This
reverses for δ greater than 4 minutes, and after 12 minutes, both curves level off at 1. Thus



JOURNAL OF APPLIED STATISTICS 11

Figure 5. Predictions of simulated pseudo waiting times (in minutes) for 3-hourly intervals, for all Ñ
prediction days. The observed waiting times are the grey box plots, and the 50%, 75%, 95% quantiles of
the posterior predicted waiting times are the light, medium and dark purple circles.

Figure 6. Evolution of the PE metric of simulated and posterior predicted pseudo waiting times, as a
function of the threshold δ. The blue curve is for the training phase, and the red curve for the test phase.

the posterior predictions from our proposed Bayesian hierarchical model can have robust
prediction performance according to this PE metric.

4. Model validation with the lane carpooling service

Our objective is to employ the two-stage Bayesian hierarchical model to predict the daily
driver flow distribution and the passenger pseudo waiting time distribution for the hourly
intervals Is, s = 1, . . . , S, with S = 24 for the upcoming week. These are then compared to
the observed driver flows and the pseudo waiting times from the same period.

4.1. Daily driver flows

We have approximately 5000 GPS traces for the 382 days from 2018-05-15 to 2019-05-31.
We first apply the preprocessing, as outlined in Appendix A.1, to convert the driver GPS
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Figure 7. Aggregate driver flow by day type, for the Lane carpooling service from 2018-05-15 to 2019-
05-31. The ordinary weekdays (ORD) are in orange, the school holidays (SCH) in green and the public
holidays/weekend days (PWE) in blue.

traces into a format suitable for computing the daily driver flows yi. For the driver flow
moving average model in Equation (2), the θθθ coefficient has a different value for each day
type, since these day types are a key determinant of home-work daily commutes. This is
verified empirically by the box plots of the daily driver flow in Figure 7. The daily driver
flow for an ordinary weekday (ORD) approaches 150 trajectories, which is about double
the driver flow on school holidays (SCH), andmore than 20 times larger than on the public
holiday/weekends (PWE).

We divide the observed driver flows yi into 6 different pairs of training phases, starting
from 2018-05-15 and with varying N, and test phases with Ñ = 7. In each case, we select
a test week with certain characteristics as outlined in Table 1. The first column are the
dates of the test week, the second column are the day types in the test week, the third col-
umn are the dates of the training weeks, and the fourth column is the number of training
days (N). For these training-test scenarios, in addition to our proposed Bayesian hierarchi-
cal multi-level (BHML) predictions, we compute predictions from a baseline frequentist
model (BASE), and a Bayesian Prophet model (PROP). The details of these competing
models are described in Appendix A.3. We input the daily driver flows into the first hier-
archical model from the Bayesian hierarchical multi-level model BHML to produce the
posterior predicted daily driver flows ỹi, as well the corresponding predictions/estimations
from the frequentist baseline model BASE and the Bayesian Prophet model PROP.

For the Test scenario # 6, the training phase covers the dates 2018-05-15 to 2019-05-19.
In Figure 8 is the evolution of the goodness-of-fit of the three different models for daily
driver flow estimation (leaving out the first week 2018-05-15 to 2018-05-21 which serves
as the ‘burn-in’ period). The goodness-of-fit is measured by the MSE of the estimated and
the observed daily driver flows, aggregated per week. Visually the BHML tends to have the
best goodness-of-fit (smallest MSE) for most weeks. The sum of these weekly MSEs are
BASE: 421.9, PROP: 816.9, BHML: 297.2, which confirms our visual impression that the
BHML achieves the best overall estimation accuracy.
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Table 1. Training-test scenarios for daily driver flows. The first column are the dates of the test week
(Ñ = 7), the second is the day types in the test week, the third are the dates of the training weeks and
the fourth column is the number of training days N.

Test week Test week day types Training weeks
#training
days (N)

#1 2019-01-14 – 2019-01-20 [l]All ORD after holiday period
(PWE/SCH)

2018-05-15 – 2019-01-13 244

#2 2019-02-25 – 2019-03-03 All SCH 2018-05-15 – 2019-02-24 286
#3 2019-04-29 – 2019-05-05 [l]All ORD except 1 PWE (2019-05-01) 2018-05-15 – 2019-04-28 349
#4 2019-05-06 – 2019-05-12 [l]All ORD except 1 PWE (2019-05-08) 2018-05-15 – 2019-05-05 356
#5 2019-05-13 – 2019-05-19 [l]All ORD except 1 PWE (transport

strike 2019-05-16)
2018-05-15 – 2019-05-12 363

#6 2019-05-20 – 2019-05-26 All ORD 2018-05-15 – 2019-05-19 370

Figure 8. Evolution of the goodness-of-fit of the daily driver flow estimations over the training period
(2018-05-15 to 2019-05-19, test scenario # 6). Goodness-of-fit is measured by the weekly aggregated
estimation MSE. Bayesian hierarchical multi-level BHML is in purple, frequentist baseline BASE in black,
and Bayesian Prophet PROP in green.

Therefore we can be confident that the Bayesian hierarchical multi-level moving aver-
age model has good estimation accuracy/goodness-of-fit, but this good performance does
not necessarily translate to prediction [15]. So for each scenario described in Table 1, we
compute the BHML, BASE and PROP models for the training phase, and then the days of
the test phase are input into each these trainingmodels to yield the daily driver flow predic-
tions. In Figure 9 are the MSEs between the observed and predicted daily driver flows: the
frequentist baseline model BASE in black, the Bayesian Prophet PROP in green, and the
Bayesian hierarchical multi-level BHML in purple. The predicted driver flows themselves
are presented in Figure A1 in Appendix A.4. Overall the BHML has the best prediction
accuracy for all test week scenarios. PROP is the uniformly the worst of these three models
for all test weeks. BASE is the best for the test scenario #1 (all ORD after PWE/SCHperiod)
and #6 (all ORD) with almost zero prediction MSE, though the difference with BHML is
not so large. These two test scenarios are where all days in the test week are the same day
type. For the other test week scenarios #1, #3, #4, #6, BHML has the smallest prediction
MSE, some times by a large margin. These test week scenarios include a day which is a
different day type to the other days within the test week, which the BHML handles the
best.

For the service operator, the sharp differences in the driver flow for different day types
within the same week has operational repercussions. For example, since the driver flow
is consistently low for all public holidays, the service operator must communicate to pas-
sengers that the service quality on a public holiday is not the same as that for an ordinary
weekday. This is analogous to a public holiday schedule in lieu of a usual weekday schedule
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Figure 9. Prediction MSE of the daily driver flow predictions for the six test week scenarios. Bayesian
hierarchical multi-level BHML are in purple, frequentist baseline BASE in black, and Bayesian Prophet
PROP in green.

provided by a bus operator. On a more positive note, since the driver flow for weekdays on
either side of the public holiday is similar to other weekdays further away, then the service
operator can also communicate that this temporary reduction in service quality is lim-
ited to the public holiday itself and the usual weekday service level can be assured on the
preceding and following weekdays.

4.2. Temporal profiles of passenger pseudowaiting times

For the passenger pseudo waiting time Gamma regression, the βββ coefficient, which deter-
mines the intra-day distribution of the waiting times, is considered to be constant for all
days (see Figure A2 in Appendix A.4 for an illustration of the mean observed daily traf-
fic flows for each weekday from the Lane carpooling service). We observe that each week
day has a similar shape so this gives some empirical justification for supposing a constant
βββ for all days. For the service operator, this means that it can treat all non-public holiday
weekdays as similar to each other.

Beforewe examine the predictions from thisGamma regressionmodel, we provide some
heuristic justification of the model itself, namely concerning the choice of the Gamma dis-
tribution and the conditioning of the waiting times with respect to the driver flow (see
Figure A3 in Appendix A.4 for a visual justification of the fits of these empirical waiting
times to Gamma distributions). As expressed in Equation (7), the pseudo waiting times are
represented by different Gamma distributions for each hourly interval, which implies that
the mean pseudo waiting times are decreasing functions of the driver flows. In Figure 10,
we have divided the observed daily driver flows into three categories: low (<100 vehicles
per day), medium (100–200 vehicles per day), and high (>200 vehicles per day). Overall
we observe that the mean waiting time is inversely proportional to the driver flow level.

Now that we have verified that a Gamma regression model is suitable for the data
observed in the Lane carpooling service, we proceed with the BHML to form predictions
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Figure 10. Mean pseudo waiting times per hourly intervals as a function of driver flow from 2019-07-
25 to 2020-02-17. Grey: low (< 100 vehicles per day), brown: medium (100–200 vehicles per day), and
green: high (> 200 vehicles per day).

Figure 11. Box plots of the weekly number of observed pseudo waiting times for each hourly interval
for weekdays from 2019-07-25 to 2020-02-17.

of the passenger pseudo waiting times. Since there are insufficient passenger carpooling
requests to robustly compute observed hourly waiting time profiles over an entire day
for the school holidays (SCH) and the public holidays/weekends (PWE), we restrict our-
selves to forming predictions for the weekdays (ORD). In Figure 11 are the box plots of the
weekly number of observed pseudo waiting times for each hourly interval for the weekdays
from 2019-07-25 to 2020-02-17. Although there are S = 24 hourly intervals, only those 6
which correspond to the service operating hours (06:00–09:00 and 16:00–19:00) contain
any observed passenger waiting times.

There are amaximumof around 40 observedwaiting times per hourly interval perweek,
which are not sufficient to infer robustly their distribution within each interval. To remedy
this data sparsity, we aggregate amoving window of test data so for time interval Is on day i,
we combine its observed pseudo waiting timeswtest,i,s with those for the same time interval
from the previous 5 weeks with the same day of week and same day type, i.e. {wtest,i−k,s :
DT(i− k) = DT(i), DN(i− k) = DN(i), k = 1, . . . , 35}. These days added to the test data
are correspondingly removed from the training data. We aggregate the final 5 weeks to
be a single test phase, so the Test scenario # 7 is composed of training weeks (2019-07-
25 – 2020-01-12) with 1289 observed training waiting times, and test weeks (2020-01-13 –
2020-02-17)with 520 observed test waiting times.Wemake predictions for only the last test
week (2020-02-10 – 2020-02-17), so the number of prediction weekdays remains Ñ = 5.

In Figure 12 are the box plots of the observed pseudo waiting times and the quan-
tiles for the posterior predictions, for the hourly intervals for the Test scenario # 7. The
observed pseudo waiting times are displayed as the grey box plots, and the 50%, 75%, 95%
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Figure 12. Predictions of passenger pseudowaiting times (PP PWT) for hourly time intervals for the Test
scenario # 7. The observed waiting times are the grey box plots, and the 50%, 75%, 95% quantiles of the
posterior predicted waiting times are the light, medium and dark purple circles.

quantiles of the posterior predicted waiting times are the light, medium and dark pur-
ple circles. The advantage of the BHML is that we have the entire sampling distribution
of the predicted waiting times, which is more comprehensive than point or interval pre-
dictions of the usual regression models. The median and upper quartile of the predicted
pseudo waiting times tend to track those for the observed waiting times, especially for the
06:00–07:00, 17:00–18:00 and 18:00–19:00 intervals. From anecdotal evidence provided
by Ecov, 15 minutes corresponds roughly to the maximum time that passengers are will-
ing to wait for a driver to arrive if a pre-arranged meeting time has not been made. With
the BHML predictions, we can assert that 95% of the waiting times for passenger requests
do not exceed this 15 minutes threshold during most of the operating hours. Whilst this
information could also be established with the empirical quantiles of the observed waiting
times, the advantage of the BHML is that it gives a more solid basis that this performance
will continue into the future.

Lastly we consider our custom PE metric from Equation (9) on the BHML posterior
predictions. Thismetric is illustrated in Figure 13, for both the training phase PE(W, W̃; δ)
(blue curve) and the test phase PE(Wtest, W̃test; δ) (red curve). The blue curve dominates
the red curve for most values of δ. This implies that the posterior predictions are more
accurate during the test phase than in the training phase. This gives us confidence that the
BHML posterior predictions are robust and are not based on over-fitting on the training
data.

For the service operator, the BHML implies that the key factor in determining the pas-
senger waiting time (i.e. the output from the second stage) is the driver flow (i.e. the output
from the first stage). It is thus imperative that a consistent level of driver participation in the
carpooling service is maintained so that consistent waiting times can be provided to pas-
sengers. Since they are non-professional drivers, then non-monetary incentives are crucial
in maintaining their participation in a stochastic carpooling service [22,23].

In contrast to the comparison of the predicted driver flows from the BHML to those
from competing models in the previous section, the comparison of the Gamma regression
with other possibilities in the second stage of the BHML is not considered here. According
to Papoutsis et al. [16], the main predictor for the passenger waiting times is the driver
flow, and so we conjecture that the choice of the passenger waiting times prediction model
is of secondary importance with respect to the choice of the driver flow prediction model.
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Figure 13. Evolution of the PE metric of observed and BHML posterior predicted passenger pseudo
waiting times, as a function of the threshold δ. The blue curve is for the training phase, and the red
curve for the test phase.

4.3. Temporal profiles for passenger perceivedwaiting times

Following the methodology described in Section 2.2.2 we propose the method below in
order to reconstruct the perceived waiting times. In our case, the unit of time is one hour
and we focus on the opening hours of the service (I1 = 6:00–7:00, I2 = 7:00–8:00, I3 =
8:00–9:00, I4 = 16:00–17:00, I5 = 17:00–18:00, I6 = 18:00–19:00). The base passenger
arrival rate is denoted by λ1, as shown in Table 2. The two other scenarios involve λ2, an
increase by 50%, and λ3, an increase of 100%.

For the base passenger arrival scenario, there are few situations where the passenger
requests overlap each other, and so there is little difference between the pseudo and the
perceived waiting times. The second and third scenarios with increased rates of passen-
ger arrivals lead to increased overlapping passenger requests. This is of intense interest to
the service operator because it informs them how the passenger perceived waiting times
respond to the increased passenger requests whilst maintaining the current driver flow. In
Figure 14 are the box plots for the pseudo and perceived waiting times for the three passen-
ger arrival scenarios from Table 2 with a constant driver flow. The pseudo waiting times of
the left panel are similar for the three scenarios since they do not account for overlapping
passenger arrivals. On the other hand, we observe that the perceived waiting times on the
right panel tend to increase as the number of passengers arriving increases. For λ2 with a
50% increase in the passenger arrivals, the perceived waiting times remain acceptable for a
stochastic carpooling service (median less than 15 minutes). However for λ3 with a 100%
increase in the passenger arrivals, the perceived waiting times exceed 15 minutes for many
passengers. For the service operator to reduce the waiting times, the driver flow must be
increased by increasing the driver participation rate.

Table 2. Poisson passenger arrival rates per hourly intervals. λ1 is the base passenger arrival rate, λ2 is
an increase by 50% and λ3 is an increase of 100%.

Morning intervals Evening intervals

06:00–07:00 07:00–08:00 08:00–09:00 16:00–17:00 17:00–18:00 18:00–19:00

λ1 8 6 4 6 4 4
λ2 12 9 6 9 6 6
λ3 16 12 8 12 8 8



18 P. PAPOUTSIS ET AL.

Figure 14. Evolution of passenger waiting times as a function of increased passenger arrival rates. Per-
ceived waiting times (light grey), pseudo waiting times (purple). λ1 is the base passenger arrival rate, λ2
is an increase by 50% and λ3 is an increase of 100%.

5. Conclusions

The main contribution of this paper is the prediction of the daily driver flows and the
hourly passenger waiting times using a nested two-stage Bayesian hierarchical model. The
first stage is a multi-level moving average model of the daily driver flows, where the multi-
level coefficient depends on if the current day is a work day, a school holiday or a public
holiday/weekend. The second stage is a Gamma regression where the covariates are the
daily driver flows from the first stage, and the response variables are the hourly passenger
waiting times. The predicted driver flows and passenger waiting times are robust going
into the future, since we demonstrated that they are not due to over-fitting. Furthermore,
since we analyse the data from an operational carpooling service, we are able to provide
operational advice. For the service operator, the baseline frequentist model is the simplest
to implement, and so may be sufficient under certain cost-benefit scenarios. However only
the more complex BHML can be utilised for more in-depth data analysis, such as quantiles
and confidence regions of passengerwaiting times, and for forward planningwith the effect
of increased passenger requests on waiting times.

We focused on modelling the driver arrival processes and assumed the passenger
arrivals to be non-random in the first stage, and on pseudo waiting times in the second
stage. One main advantage of the Bayesian hierarchical framework is that it is straightfor-
ward to generalise any of the models in the constituent stages (i) to allow the passenger
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arrivals to also be a random process, and (ii) to predict both the pseudo and perceived pas-
senger waiting times. These perceived waiting times are of intense operational interest to
stochastic carpooling service providers.
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Appendix 1

A.1 GPS traces pre-processing

A GPS trace is an �-sequence of triplets XXX = {(Xi,Yi,Ti)}�i=1 where (Xi,Yi) are the longitude, lati-
tude coordinates of the GPS sensor at the ith timestamp Ti. Them pick-up/drop-off locations in the
carpooling network are represented by their GPS coordinatesMMM1, . . . ,MMMm. Around each of the m
pick-up/drop-off locationsMMM1, . . . ,MMMm, a ball of 1 km radius is drawn to obtain B(MMM1), . . . ,B(MMMm).
The intersection of these balls and theGPS trace,XXX ∩ B(MMM1), . . . ,XXX ∩ B(MMMm), ism sub-sequences of
theGPS points ofXXX. For those pick-up/drop-off locationswith non-empty intersections, we consider
that the driver is able to collect a passenger at these points without onerous detours.

This only considers the spatial proximity of the driver to a passenger at a pick-up/drop-off loca-
tion. For the carpooling to succeed, they also need to be also in temporal proximity. Among the
spatial intersections XXX ∩ B(MMM1), . . . ,XXX ∩ B(MMMm), we examine the corresponding timestamps and
retain only those in a suitably restrained time interval. If this set of spatio-temporal intersections is
non-empty thenwe proceed to compute the closest GPS points inXXX to the pick-up/drop-off locations
MMMj, as defined byXXXMMMj = {(Xk,Yk,Tk) : k = argmin1≤i≤� ‖((Xi,Yi)−MMMj‖}, j = 1, . . . ,m. From this
closest pointXXXMMMj , we extract the corresponding timestamp Tk to be an estimate of the driver arrival
time atMMMj.

As an example, suppose that there two pick-up/drop-off pointsMMM1,MMM2 at which the GPS traceXXX
has well-defined estimated arrival times. Then the � points ofXXX can be reduced to the sequence of 4
points X̃XX = {(X1,Y1,T1) > XXXMMM1 > XXXMMM2 > (X�,Y�,T�)} where (X1,Y1,T1) is the driver origin and
(X�,Y�,T�) is the driver destination.With this simplified trace X̃XX, we are still able to determine if the
driver can fulfil a passenger request atMMM1 for a trip going toMMM2 at time t. The complex topology of
XXX is simplified by retaining a small number of key derived indicators [13].

A.2 Simulation algorithms

Algorithm 1 simulates a driver flow for a single day with no day types. Equation (2) with no day types
simplifies to yi = α

∑K
k=1 yi−k + εi, which is a true autoregressive model. The inputs are the day i,

the coefficient α, the autoregression order K, and the error variance σ 2
ε . The output is a single driver

flow for day i. The repeat loop ensures that the simulated driver flow is strictly positive. To simulate
a sequence ofN driver flows, we initialise the values generated by Algorithm 1 for i = 1, . . . ,K days,
and then iterate Algorithm 1 sequentially for i = K + 1, . . . ,N.
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Algorithm 1: Daily driver flow without day types
1 procedure TrafficFlow(i,α,K, σ 2

ε )
2 if i <= K then
3 initialise y←− N (30, σ 2

ε )

4 else
5 repeat
6 y←− N (α

∑K
k=1 TrafficFlow(i− k,α,K, σ 2

ε ), σ 2
ε )

7 until y > 0;
8 end
9 return: y driver flow for day i

With Algorithm 1 defined, it is straightforward to define one with day types (i.e. Equation (2)) in
Algorithm 2. The latter has similar inputs: the day i, the day type coefficients θθθ , the autoregression
order K, the error variance σ 2

ε , and the vector coefficients θθθ . The output is the daily driver flow for
day i, accounting for the day types before day i.

Algorithm 2: Daily driver flow with day types
1 procedure TrafficFlowDT(i,θθθ ,K, σ 2

ε )
2 if DT(i) == ORD then
3 y←− TrafficFlow(i,αORD,K, σ 2

ε )

4 else
5 if DT(i) == SCH then
6 y←− TrafficFlow(i,αSCHηSCH,K, σ 2

ε )

7 else
8 if DT(i) == PWE then
9 y←− TrafficFlow(i,αPWEηPWE,K, σ 2

ε )

10 end
11 end
12 end

Algorithm 3 simulates the passenger pseudo waiting times in Equation (7) for a sequence of days.
The inputs are the number of daysN, the day type coefficientsθθθ , the autoregression orderK, the error
variance σ 2

ε , the first shape parameter for the Gamma distribution ν, the S regression parametersβββ ,
and the number of replicates of the waiting times J. The output are J replicates of a pseudo waiting
time for each time interval Is, s = 1, . . . , S, for each day i = 1, . . . ,N. The TrafficFlowDT proce-
dure (Algorithm 2) is called outside of the replicates loop since all waiting times on a given day are
simulated from the same daily driver flow.

An iteration of the nested loop in Algorithm 3 in the Appendix results in a single N × S matrix
of pseudo waiting times drawn from the appropriate Gamma distributions

WWW(j) ∼

⎡
⎢⎣

�(ν,β1y1) . . . �(ν,βSy1)
...

...
�(ν,β1yN) . . . �(ν,βSyN)

⎤
⎥⎦ .
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Algorithm 3: Passenger pseudo waiting times
1 procedureWaitingTime(N,θθθ ,K, σ 2

ε , ν,βββ , J)
2 S←− Len(βββ)

3 for i in 1:N do
4 Y[i]←− TrafficFlowDT(i,θθθ ,K, σ 2

ε )

5 end
6 for j in 1:J do
7 for i in 1:N do
8 for s in 1:S do
9 WWW(j)[i, s]←− �(ν,βsY[i])

10 end
11 end
12 end
13 return:WWW(1), . . . ,WWW(J) sequence of waiting time matrices

for j = 1, . . . , J. These are collated into the sequence

W = {WWW(1), . . . ,WWW(J)} =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
w(1)
1,1 . . . w(1)

1,S
...

...
w(1)
N,1 . . . w(1)

N,S

⎤
⎥⎥⎦ , . . . ,

⎡
⎢⎢⎣
w(J)
1,1 . . . w(J)

1,S
...

...
w(J)
N,1 . . . w(J)

N,S

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭ .

As Equation (8) generates only a single posterior prediction w̃s for a time interval Is, we collate these
w̃s for s = 1, . . . S into an S-vector, and in turn collate N of these S-vectors of posterior prediction
distributions row-wise into a N × Smatrix.

A.3 Competingmodels for driver flows

In addition to themulti-levelmoving averagemodel for driver flows, we consider a baseline frequen-
tist model and a Bayesian Prophet model. The baseline frequentist model has multi-levels like our
model, but without the Bayesian moving average structure. To account for the school/public holi-
days, as proposed by [10], if day i is not a school/public holiday then the average is calculated over
all previous days with the same day of week as day i; and if day i is a school/public holiday, then the
average is over all previous school/public holidays. That is,

yi = 1
|Td(i)|

∑
k∈Td(i)

yi−k1{DT′(i) 
= HOL} + 1
|THOL(i)|

∑
k∈THOL(i)

yi−k1{DT′(i) = HOL} + εi (A1)

where the day type function is

DT′(i) =
{
ORW if day i is an ordinary workday or a weekend day
HOL if day i is a school or a public holiday;

Td(i) = {k : k < i, DN(i− k) = d} is the set of days with the same day of week before day i;
THOL(i) = {k : k < i, DT′(i− k) = HOL} is the set of school/public holidays before day i; and DN
is the day of week number function, DN(i) = 1 if day i is a Monday, DN(i) = 2 if day i is a Tuesday
etc.

The Bayesian Prophet model, devised by Taylor and Letham [19]; Facebook Core Data Science
Group [6], is an additive model with three components:

yi = g(i)+ s(i)+ h(i)+ εi (A2)
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where g(i) is the trend, s(i) is the seasonality, and h(i) is the holiday effect. The linear trend is
g(i) = (k+ aaa(i)�δδδ)i+ (m+ aaa(i)�γγγ ) where k is the growth rate, m is the offset, aaa is the change
point indicator, δδδ is the growth rate adjustment, and γγγ is the piece-wise continuity adjustment
to ensure that g is continuous. The seasonality component is a Fourier decomposition s(i) =∑L

�=1[α� cos(2π�i/P)+ β� sin(2π�i/P)]where (α�,β�) are the Fourier coefficients,L is the number
of Fourier coefficients and P is the period (in days). The holiday effect is h(i) = hhh(i)�κκκ where, say,
hhh(i) = (1{DT(i) = SCH}, 1{DT(i) = PWE}) is the vector of indicator variables of the type of holi-
day of day i, and κκκ is the weight vector, usually equal to the all-ones vector. Taylor and Letham [19]
provide the details for the construction of the change point function aaa(t) and the continuity adjust-
ment parameter γγγ . These authors set the number of Fourier coefficients to be L = 10 for yearly
cycles and L = 3 for weekly cycles. What remains is to estimate the trend growth rate k, the offset
m, the growth rate adjustments δδδ and the Fourier coefficients ααα.

A.4 Supplementary figures for themodel validation of the lane carpooling service

Figure A1 illustrates the predictions for each scenario described in Table 1: the Bayesian hierarchical
multi-level BHML in purple, the frequentist baseline model BASE in black, the Bayesian Prophet
PROP in green, and as well as the observed daily driver flows in blue. The PROP predictions are
mostly too low on week days and too high on weekends for all six test weeks in comparison to the
observed driver flows, whilst the BHML appears to have marginally better prediction performance
than the BASE.

Figure A1. Predictions of daily driver flows for the six test week scenarios. Observed daily driver flows
are in blue. Bayesian hierarchical multi-level BHML are in purple, frequentist baseline BASE in black, and
Bayesian Prophet PROP in green.
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Figure A2. Mean driver flows for 15 minute intervals for each weekday for the Lane carpooling service,
from 2018-05-15 to 2019-05-31. Monday is in blue, Tuesday in orange, Wednesday in green, Thursday in
pink, Friday in purple.

Figure A3. Histograms of observed pseudo waiting times for each hourly interval for weekdays from
2019-07-25 to 2020-02-17.

Figure A2 displays themean observed daily traffic flows for each weekday from the Lane carpool-
ing service, where the day is divided into 15 minute intervals. Since the service operating hours are
06:00–09:00 and 16:00–19:00, there are few drivers outside them. Each dot in the figure is the mean
number of drivers for each 15 minute interval for each week day from 2018-05-15 to 2019-05-31.

In Figure A3 are the histograms of the observed pseudo waiting times for each hourly interval for
weekdays from 2019-07-25 to 2020-02-17. We observe that these empirical distributions resemble
Gamma distributions and have a different rate parameter βs within each different hourly interval.
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