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Technical Note

Introduction

Many studies have highlighted the complexity of eukaryotic 
cells. To cope with the enormous number of assays that need 
to be performed to study the function of cellular proteins and 
to characterize cellular regulatory circuits, high-throughput 
approaches have been pushed forward in the past decade. 
High-throughput approaches monitor many cellular pheno-
types under similar assay conditions and thus should allow a 
better understanding of cell behavior. However, because cul-
tured cells often display strong morphological cell-to-cell 
variation,1 high-throughput approaches have experienced 
some limitations. It has been shown that population size, 
local cell density, and cell position within a cellular islet 
determine cellular morphology and responsiveness.

A primary method to study cellular function is to examine 
cell morphology after a given manipulation such as treatment 
with chemical compounds or specific gene silencing by RNA 
interference. These techniques in conjunction with fluorescent 
microscopy are frequently exploited for functional analyses at 
the scale of high-throughput studies.2 Currently, a variety of 
numerical features are extracted from images that are further 
analyzed with classification strategies.3,4 Features represent 

any measured property derived from the image, such as total/
mean/standard deviation of fluorescence intensity, texture, 
Zernike shape descriptions, and so forth. Unfortunately, they 
often suffer from a lack of biologically meaningful, human 
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Abstract
A screening procedure was developed that takes advantage of the cellular normalization by micropatterning and a novel 
quantitative organelle mapping approach that allows unbiased and automated cell morphology comparison using black-box 
statistical testing. Micropatterns of extracellular matrix proteins force cells to adopt a reproducible shape and distribution 
of intracellular compartments avoiding strong cell-to-cell variation that is a major limitation of classical culture conditions. 
To detect changes in cell morphology induced by compound treatment, fluorescently labeled intracellular structures from 
several tens of micropatterned cells were transformed into probabilistic density maps. Then, the similarity or difference 
between two given density maps was quantified using statistical testing that evaluates differences directly from the data 
without additional analysis or any subjective decision. The versatility of this organelle mapping approach for different 
magnifications and its performance for different cell shapes has been assessed. Density-based analysis detected changes in 
cell morphology due to compound treatment in a small-scale proof-of-principle screen demonstrating its compatibility with 
high-throughput screening. This novel tool for high-content and high-throughput cellular phenotyping can potentially be 
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interpretable measurements (e.g., texture or Zernike shape 
descriptions).

We have recently developed a computational approach 
that takes advantage of the cellular normalization by 
micropatterning and a novel quantitative organelle mapping 
approach that allows automated cell morphology compari-
son. Briefly, morphological cell-to-cell variations are first 
reduced by plating cells on adhesive microfabricated pat-
terns of extracellular matrix proteins. This in vitro5 confine-
ment of cell shape mimics the restriction of space that cells 
experience in body tissues.6 Then, images of fluorescently 
marked intracellular proteins are transformed into a cloud 
of coordinate points, and their spatial organization is rigor-
ously quantified by probabilistic density mapping,7 an 
applied mathematical method. Using this approach, we 
found that intracellular compartments are spatially well 
defined at the single-cell level in conditions of confined cell 
adhesion.7 Because the organization of each tested traffick-
ing compartment was highly reproducible, density mapping 
was employed to quantify subtle alterations of cellular mor-
phologies.8 To compare density maps that summarize mul-
tivariate data, such as spatial organization of intracellular 
structures, we have developed a fully automated test that 
estimates all parameters needed to compute the p value (i.e., 
the mean and variance parameters of the asymptotically 
normal null distribution) directly from the segmented data. 
This test does not require any subjective decisions and 
allowed the detection of subtle changes in cell organization 
induced by disruption of the cellular cytoskeleton.8

In the present work, the density-mapping approach was 
adjusted to high-throughput screening by implementing cell 
normalization, density map calculation, and comparison 
into a 96-well format. The framework was tested for its per-
formance at different magnifications and for different cell 
shapes. Given that cell morphology can be monitored by 
probabilistic density maps, statistical significance of the 
similarity between two cellular morphologies was assessed 
in an automated and unbiased manner. Thus, density map-
ping is a novel tool for high-content and high-throughput 
cellular phenotyping that can be employed without a high 
level of statistical training.

Materials and Methods

Cells and Sample Preparation

An EGFP-Rab7–expressing stable cell line was generated 
by transfection of the plasmid pEGFP-Rab7 into hTERT 
RPE-1 cells (Invitrogen, Carlsbad, CA) and selection with 
500 µg/mL geneticin. Cells were grown in DMEM/F12 (for 
RPE-1) or DMEM (for HeLa) medium supplemented with 
10% fetal bovine serum and 1% penicillin/streptomycin. 
Seventy percent confluent cells were trypsinized and seeded 
on micropattern-printed 96-well CYTOOplates (CYTOO) 

at a concentration of 4000 cells/well. To depolymerize 
microtubules, nocodazole was added in decreasing concen-
trations (10 µM, 1 µM, 0.1 µM, 10 nM, 1 nM, 0.1 nM), and 
cells were incubated at 37 °C for 1 h. Taxol, cytochalasin D, 
carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and 
ibuprofen were used following the same procedure. All 
drugs were purchased from Sigma (St. Louis, MO). Cells 
were fixed with 4% (w/v) formaldehyde for 15 min and 
washed three times with phosphate-buffered saline (PBS). 
In the case of an immunofluorescence staining, formalde-
hyde-fixed cells were quenched with 0.05 M NH

4
Cl, 

washed three times with PBS, and permeabilized in 
PBS/0.2% bovine serum albumin/0.05% saponin. Cells 
were then incubated with primary antibody anti-Lamp1 
(BD Pharmingen, Franklin Lakes, NJ) for 1 h, washed in 
PBS, and incubated with Alexa Fluor 488- or Cy3-coupled 
secondary antibodies (Jackson ImmunoResearch, West 
Grove, PA). After three washes with PBS, nuclei were 
stained with 0.2 µg/mL Dapi.

Immunofluorescence Image Acquisition and 
Analysis

Images were acquired using the INCell2000 automated 
wide-field microscope (GE Healthcare) equipped for image 
deconvolution. Acquisition was performed using either 10× 
or 20× dry objectives. Images were sorted in ImageJ9 using 
the micropatterned single-cell sorting (MSCS) plugin and 
segmented with the multidimensional image analysis inter-
face running under MetaMorph (Universal Imaging 
Corporation, Bedford Hills, NY) based on wavelet decom-
position.10 The watershed function was routinely applied to 
detect precisely individual structures in dense regions.

Kernel Density Estimator

The coordinates of the segmented structures were processed 
for density estimation programmed in the ks library11 in the 
R programming language12: the probability density function 
f for each data sample of n coordinates X

1
, X

2
, …, X

n
 was 

estimated. A nonparametric, unbinned kernel density esti-
mator was used. At each of the data points, a kernel function 
K was centered. The kernel functions were then summed to 
form the kernel density estimator f̂ :

H H( ) ( )x x X= −
=
∑1
1n
K

i

n

i

in which K
H
 is the Gaussian kernel with mean zero and  

variance matrix H. To estimate H (also known as the  
bandwidth), the plug-in selector in the ks library was used, 
which has been shown to be reliable for two-dimensional 
and three-dimensional spatial distributions.13 For visualiz-
ing kernel density estimates, probability contours were 

 f̂
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employed.14,15 For a 96-well plate, the analysis was adapted 
to compute the series of density maps in a batch mode.

Statistical Error of Kernel Density Estimation

The statistical error for kernel density estimates was deter-
mined by calculating the estimated mean integrated squared 
error (MISE) as a function of the number of cells analyzed. For 
the combined sample of the n endomembrane coordinates 
from m cells, the average number of endomembranes per cell 
(n/m) was computed. To compute the estimated MISE for  
j cells, j = 1, 2, …, m, j × (n/m) coordinates were resampled 
from the total of n coordinates. This resampling was performed 
100 times for each j to ensure statistical robustness.

Statistical Testing of Density Maps

The pairwise comparison of endosomal spatial distributions 
was carried out using the two-sample kernel density–based 
test introduced by Duong et al.,8 in which X

1
, X

2
, …, X

n1
 

was the sample from the control density map f
1
 and Y

1
, Y

2
, 

…, Y
n2

 was the sample from the treatment density map f
2
. If 

the usual null hypothesis H
0
: f

1
 = f

2
 holds, the two density 

maps will be statistically the same. The test statistic was 
T = + − +ψ ψ ψ ψ1 2 1 2 2 1( ), , , where
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where K is the kernel function and the bandwidth matrix 
parameters are H

1
 and H

2
. Assuming that the null hypothesis 

holds H
0
: f

1
 = f

2
 = f, then, as n n1 2, →∞ , the test statistic T fol-

lows an asymptotic normal distribution. More precisely, 
T

n n
NT

T
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+
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∫ ∫( ) ( ) .x x x x  (Additional mathematical 

details are presented by Duong et al.8). This test statistic 
was interpreted as comparing intrasample pairwise differ-
ences X

i1
 – X

j2
 and Y

i1
 – Y

j2
 to the intersample pairwise 

differences X
i
 – X

j
. If the latter are larger than the former, 

this indicates that the samples are different. The asymptotic 
normality allows for the easy computation of a p value. 
Note that this setup is for a single pair of density maps. To 
potentially compare all 96 wells against each other, the sta-
tistical tests were adopted to a batch mode.

Results and Discussion

Cell Plating on 96-Well Micropatterned 
Substrates and Single-Cell Selection

Cell seeding on micropatterned substrates does not provide 
complete coverage of all micropatterns, with one single cell 
required for analysis. Thus, the number of single 

micropatterned cells in a 96 well was first estimated. 
Commercially available micropatterned 96-well plates 
(CYTOO) were obtained that contained an average of 4000 
micropatterns/well according to the manufacturer’s estima-
tion. To determine the correlation between cell number and 
micropattern occupation per single cells, different numbers 
of cells per well were seeded (3200, 3500, 4000, 4500, or 
4800 cells per well). RPE-1 cells that stably expressed 
EGFP-Rab7, a marker of lysosomes, were used to visualize 
intracellular compartments. Lysosomes are involved in sev-
eral important cellular functions, including processing of 
nutrients, ligands, and receptors during endocytosis that are 
transported along microtubules. Images were acquired at 
10× and 20× for up to four fluorescence channels, including 
fluorescence staining of micropatterns (Cy5), fluorescence 
staining of the nucleus (Dapi), and fluorescence stainings 
for intracellular structures of interest (green fluorescent 
protein [GFP]; Fig. 1A). A plugin was programmed in 
ImageJ (MSCS) to select for patterns that contained only 
one nucleus and thus one single cell. Briefly, after the detec-
tion of each full pattern (Fig. 1A, upper panel), the same 
region was cropped for the Dapi channel. Segmentation 
analysis of the nucleus sorted the images into three catego-
ries: no cell per pattern, one cell per pattern, and more than 
one cell per pattern. Significant differences in the average 
number of single cells were not detected when varying cell 
numbers (data not shown). Thus, 4000 cells per well were 
used for all following experiments. Based on the analysis of 
1,199,973 single patterns detected in more than 20 plates, 
approximately 25% of micropatterns were occupied by a 
single cell in independent seeding assays. Figure 1B shows 
the statistics from one typical experiment using nine plates 
on which a total of 514,571 patterns were detected contain-
ing 135,916 single cells (26.4% single-cell occupancy). 
After the identification of single cells on patterns, the  
corresponding images visualizing the intracellular compart-
ments were cropped using the pattern as reference (Fig. 1A). 
As a result, stacks of images of single aligned cells were 
obtained for a given intracellular structure (e.g., lysosomes). 
Positional information of all structures of interest was 
extracted by segmentation analysis in Metamorph 
(Universal Imaging Corporation). Approximately 16 struc-
tures per cell were detected at 10× magnification and 
approximately 55 structures per cell at 20× magnification 
(Fig. 1C, D).

Implementation of Cell Normalization and 
Density Map Calculation into a 96-Well Setup

To set up the overall workflow for phenotypic screening 
using the organelle mapping approach, the 96-well 
CYTOOplate starters was first employed, which contains 
five different micropattern shapes (disc-, crossbow-, I-, Y-, 
and L-shaped micropatterns) in two different sizes of 700 µm2 
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and 1100 µm2 (Suppl. Fig. 1A). Columns 1 and 12 of the 
96-well plate corresponded to control wells (homogenously 
coated/no micropattern) and were not analyzed. To simplify 
the overall process, RPE-1 cells that stably expressed EGFP-
Rab7 were added to 96 wells (4000 cells per well), fixed, 
imaged at 20×, sorted, and segmented. All coordinates of 
Rab7-marked lysosomes from all single cells in one well 
were aligned and plotted on the 96-well plate format (Suppl. 
Fig. 1B). The aligned coordinates were used to calculate the 
average density maps in each well according to Schauer  
et al.7 in the R software12 in a batch mode. For each well, 
Gaussian functions (kernels) with mean zero and an opti-
mized variance were centered at each of the data points for all 
cells and summed, revealing the underlying density through-
out the cell that was visualized by the 25%, 50%, and 75% 

probability contours (Suppl. Fig. 1C). Contours represent 
the smallest area in which a given percentage of endomem-
branes are found: for example, the 50% probability contour 
defines the smallest area in which 50% of endomembranes 
are located. A 96-well plate map for visualization was pro-
grammed that reveals for each well information about the 
well number, the treatment condition, and an additional 
parameter such as micropattern shapes and the statistics of 
the analyzed well, including identified single-cell and intra-
cellular structure numbers (Suppl. Fig. 1D). This interface 
allows direct and intuitive visualization of subcellular 
changes of the analyzed intracellular compartment. Then, 
wells were pairwise compared using a density-based test.8 This 
test computes a p value to evaluate the statistical difference of 
two density maps in a robust, automatic, and unbiased manner 

Figure 1.  Single-cell selection on the 96-well micropatterned support. (A) Fluorescence images of crossbow-shaped micropatterns 
as well as nuclei and lysosomes from corresponding crossbow-shaped micropatterned cells imaged at 20×. The composite image 
shows micropatterns in red, the nuclei in blue, and lysosomes in green. Micropatterns/cells that are framed were selected for further 
analysis: all micropatterns were selected whose images were complete; cells were selected only if they contained one nucleus.  
(B) Analysis of cell distribution on micropatterns. Results are shown in percentages and bars represent the SD from nine independent 
plates on which a total of 514,571 patterns were detected containing 135,916 single cells. (C) Composite images of one crossbow-
shaped micropattern in red and lysosomes from one single cell in green and corresponding fluorescence images and segmented 
images of endosomes at 10× and 20× image magnification. Scale bars are 10 µm. (D) Analysis of the number of structures detected by 
segmentation in single cells at 10× and 20× magnification. Bars represent SD from 2687 (10×) or 5332 (20×) single cells.
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that allows its usage in high-throughput approaches in which 
user intervention needs to be minimal. For a 96-well plate, 
there are potentially many possible pairwise comparisons; 
thus, the statistical tests were adopted to a batch mode.

Together, the organelle map framework was adjusted to 
a high-throughput analysis that allows biological scientists 
even without a high level of statistical training to identify 
hits following a user-friendly workflow. It requires cell 
alignment, segmentation, density calculation, and pairwise 
statistical testing that are all programmed into a batch mode 
for the 96-well format to streamline the statistical analysis 
pipeline.

Cell Number Estimation for Stable Density 
Maps at Low Magnification and Analysis of 
Different Pattern Shapes

We have previously shown that 30 to 40 cells were sufficient to 
obtain stable density maps of different intracellular compart-
ments imaged at 100× (Fig. 2A, pink).7 As the total number of 
structures is important for the reliability of density maps and 
thus determines the number of cells required for analysis, the 
reliability of density maps was estimated for an imaging mag-
nification of 20×, which is typically used for high-throughput 
screening. The MISE of the density estimation of late endo-
somes was computed in cells grown on small- (700 µm2, light 
blue) and medium- (1100 µm2, dark blue) sized micropatterns 
as a function of the number of cells analyzed (Fig. 2A) and 
compared with the MISE obtained for cells imaged at 100×, as 
shown previously.7 For less than 10 cell, the box plots of esti-
mated MISEs showed a large variability, with significant 
improvement in estimated MISE when adding data for each 
subsequent cell. The estimated MISE only marginally dimin-
ished between 20 and 30 cells and did virtually not change 
thereafter. Density maps from data acquired at 20× were more 
heterogeneous than those from 100× acquisition (pink) for 
small numbers of cells; however, all density maps became 
stable for more than 30 cells. This demonstrated that using 
density estimation with micropatterned cells at a magnification 
of 20× is robust from only several tens of cells for both sizes of 
micropattern.

In addition, the impact of cell shape on density mapping 
was analyzed. The MISE was computed for the density 
maps of lysosomes in cells adhering to the five different 
micropattern shapes present on the CYTOO plate starter 
(Fig. 2B). Although the MISE behaved very similarly for 
different shapes, round patterns gave the most stable den-
sity maps (red), followed by H-shaped (yellow), crossbow-
shaped (pink), L-shaped, and Y-shaped patterns. This 
analysis showed that the choice of the shape is not critical 
for density-based analysis.

Together, density-based image analysis performed com-
parably well between high- and low-magnification images 
and is adaptable to different micropattern shapes.

Unbiased Comparison of Cell Morphology

To determine assay robustness, a series of quality control 
analyses was performed in 96-well plates that contained the 
same micropattern shape (L-form). Again, 4000 EGFP-
Rab7–expressing RPE-1 cells were seeded per well. The 
first control plate contained DMSO in one half of the plate 
and no treatment in the other half of the plate (Suppl. Fig. 2A). 
To assess the reproducibility of density maps between 
DMSO-treated and nontreated conditions, 20 fields per well 
at 20× were acquired, resulting in the detection of 23,038 
micropatterns, with a total of 5184 single cells detected 
(about 54 cells per well). Density maps for each condition 
were obtained (Suppl. Fig. 2B), each DMSO-treated well 
was compared with all nontreated wells of the same row 
using our statistical test,8 and the average p value was cal-
culated (Fig. 3A). To study how the p value behaved for 

Figure 2.  Estimated mean integrated squared error (MISE) for 
density estimation as a function of the number of cells analyzed.  
(A) MISE of density maps of lysosomes as a function of the 
number of cells analyzed with n average structures per cell for 
cells grown on crossbow-shaped patterns of different sizes 
and different imaging magnification. Small micropatterned cells 
were 700 µm2 (pattern diameter 26.5 µm), and medium-sized 
micropatterned cells were 1100 µm2 (pattern diameter 33 µm); 
both were imaged at 20×. Big micropatterned cells were 1300 
µm2 (pattern diameter 36 µm) and were imaged at 100×.7 (B) 
MISE of density maps of lysosomes as a function of the number 
of cells analyzed for cells grown on medium-sized micropatterns 
of different shapes.

 at Universite Pierre et Marie Curie on April 16, 2014jbx.sagepub.comDownloaded from 

http://jbx.sagepub.com/
http://jbx.sagepub.com/


322	 Journal of Biomolecular Screening 19(2)

increasing numbers of cells, 2, 3, 4, 6, or 12 wells were 
pooled (Suppl. Fig. 2B). Then, DMSO-treated wells were 
compared pairwise with all corresponding pooled non-
treated wells, and the average p values were calculated. As 
expected, the average p values were p > 0.05 for all well 
numbers (and cell numbers) analyzed, indicating that there 
was no significant difference in lysosomal positioning 
between nontreated and DMSO-treated cells, even for as 
little as several tens of cells (Suppl. Fig. 2C). The corre-
sponding box plots are shown in Supplementary Figure 
2D.

Next, the method’s potential to detect changes in a screen 
setup was tested by monitoring lysosome positioning upon 
depolymerization of the microtubule cytoskeleton. A sec-
ond control plate was prepared containing no treatment, 
DMSO treatment, and nocodazole treatment in two sepa-
rated columns (Suppl. Fig. 3A). Cells were treated with  
10 µM nocodazole, a concentration that did not alter cellular 
shape as judged by representative images of single cells and 
average intensity projections of all cells from one nontreated 
well or one nocodazole-treated well (Suppl. Fig 3B). Using 
the same image-processing settings as for the first plate, we 
obtained about 52 cells per well. Again, cells were either 
analyzed from single wells or from pooled wells (2, 4, and 
8 wells), which increased the number of analyzed cells. 
Density maps were obtained for each condition (Suppl. 
Fig. 3C), and the average p values were calculated for all 
possible combinations of comparison (Suppl. Fig. 3D). 
When nontreated and DMSO-treated cells were compared, 
the average p values were p > 0.05, indicating that there is 
no significant difference in lysosomal positioning even for 
as little as several tens of cells (Fig. 3B and Suppl. Fig. 3D). 

When nontreated and nocodazole-treated cells were com-
pared, average p values of p < 0.05 were obtained in all tested 
conditions (Fig. 3B and Suppl. Fig. 3D). The corresponding 
box plots are shown in Supplementary Figure 3E. 
Increasing cell numbers led to lower p values for nocodazole-
treated cells, indicating that increasing cell numbers was 
advantageous. Sources of false-positives and false-nega-
tives at low cell numbers may be noncomplete spreading of 
cells on micropatterns, as cell spreading was not accessed 
under our experimental conditions.

Together, the results of this analysis demonstrated that 
changes in intracellular distribution of lysosomes due to 
microtubule disruption could be detected with statistical 
significance in a screening setup with several tens of cells.

Detection of Morphological Changes Induced by 
Different Drug Treatments

To further demonstrate the capability of this framework to 
detect changes induced by different chemical compounds, 
several well-characterized drugs were tested in different 
dilutions. For this analysis, HeLa cells were used that were 
seeded into a 96-well containing crossbow-shaped micropa-
tterns and were immunostained with α-Lamp1 antibody to 
detect lysososmes. Forty-two fields per well were acquired, 
giving rise to about 150 single cells per well. A decision was 
made to oversample, because HeLa cell morphology is 
more heterogeneous than that of RPE-1 cells7 (e.g., the 
organization of the Golgi apparatus can be fragmented or 
not), potentially requiring more cells for a robust analysis. 
In addition to nocodazole, other drugs were tested, includ-
ing taxol, which stabilizes microtubules; cytochalasin D, 

Figure 3.  Control analysis of cell morphology comparisons. (A) Average p values of the comparisons between nontreated cells and 
DMSO-treated cells grown on L-shaped micropatterns for increasing numbers of analyzed cells (see also Suppl. Fig. 2). Nontreated 
cells from 1, 2, 3, 4, 6, or 12 wells were compared to corresponding DMSO-treated cells from 1, 2, 3, 4, 6, or 12 wells. Bars represent 
the SD of at least 16 pairwise comparisons (see also Suppl. Fig. 2A). (B) Average p values of the comparison between nontreated 
cells and DMSO-treated cells (closed circle) as well as nontreated cells and nocodazole-treated cells (open circle) grown on L-shaped 
micropatterns for increasing numbers of analyzed cells (see also Suppl. Fig. 3). Nontreated cells from 1, 2, 4, or 8 wells were 
compared with either corresponding DMSO-treated cells from 1, 2, 4, or 8 wells or corresponding nocodazole-treated cells from 1, 
2, 4, or 8 wells. Bars represent the SD of at least four pairwise comparisons (see also Suppl. Fig. 3).
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which inhibits actin polymerization; and CCCP, which 
inhibits the proton motive force as well as ibuprofen as neg-
ative control. Each drug was tested in dose response with 
concentrations ranging from 10 µM to 0.1 nM (1:10 serial 
dilutions), and each drug concentration was tested in tripli-
cate (Suppl. Fig. 4). Each of the wells containing drugs was 
compared with 12 DMSO-treated control wells, and the 
corresponding p values were calculated. Changes in lyso-
somal positioning were clearly detected by density maps 
(Fig. 4A) and the statistics of the black box test (Fig. 4B). 
This was observed for all tested drugs except ibuprofen, for 

which lysosomal distribution was not altered even at the 
highest concentration (10 µM). The average p values of 
triplicates demonstrated that taxol treatment was detected at 
all tested concentrations (p < 0.05) and that treatment with 
nocodazole and cytochalasin D was detected with p < 0.05 
at as low as 1 nM of drug concentration. Treatment with 
CCCP gave rise to significant changes in lysosomal posi-
tioning only for 10 µM. Thus, a concentration-dependent 
increase in p values was found for several drugs tested. 
Furthermore, density maps revealed that changes in lyso-
somal positioning were similar upon microtubule disruption 

Figure 4.  Detection of morphological changes after drug treatment in a 96-well setup. (A) Fluorescence images and corresponding 
density maps of lysosomes at the indicated drug concentrations. Fluorescence images show a representative image of lysosomes at  
10 µM drug concentrations that did not alter cell shape. Density maps were calculated using all single cells in one well containing  
N cells and n structures. The color of probability contours represents the smallest regions in which 25% (red), 50% (orange), and  
75% (yellow) of lysosomes are found. Scale bars are 10 µm. (B) Average p values of the comparison between DMSO-treated cells and 
drug-treated cells at different drug concentrations. Bars represent the SD of well triplicates (see also Suppl. Fig. 4).
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or stabilization (treatment with nocodazole or taxol, respec-
tively) but differed upon interfering with the actin cytoskel-
eton or the energy metabolism of the cell (treatment with 
cytochalasin D or CCCP, respectively). This direct and 
intuitive visualization of changes in the distribution of 
intracellular structures is useful to assign functional roles to 
tested molecules. To further validate our approach for 
screening, small known compound libraries will be tested to 
assess the robustness of the framework and/or the hit rate.

One limitation in applying our approach for very high-
throughput screening (e.g., genomewide screening or big drug 
libraries) is the large amount of acquired images that is required 
to detect sufficient single cells as they represent only a quarter 
of all imaged micropatterns. To solve this problem, smart 
microscopes will be required that perform a preimaging at low 
resolution and specifically acquire regions with many single 
cells. Optimally, only well-spread cells should be selected that 
reduce the number of analyzed cells to about 30, as indicated 
by the MISE estimation. Currently, our approach is suitable for 
screens with a lower amount of conditions to test, such as well-
defined drug libraries, siRNA libraries targeting specific gene 
families, or in secondary screens.

Together, density-based analysis was tested in a screening 
setup, in which changes in lysosomal positioning were detected 
for several drugs tested. Density-based screening may inherit 
several advantages of our probabilistic image analysis 
method7,8: (1) Unlike state-of-the-art high-content/ 
high-throughput analysis on unrestricted cells having massive 
cell-to-cell variation, statistically significant results are 
obtained with only several tens of cells per condition. (2) 
Density-based screening estimates all required test parameters 
directly from the data and do not require computationally 
intensive analytical techniques such as classification. As image 
acquisition facilities are developed at an accelerated speed and 
advanced microscopes acquire thousands of images daily, 
there is a rising need for automated image analysis tools. (3) 
The organelle maps for each well allow direct visualization of 
cellular phenotypes. Thus, our organelle mapping framework 
in micropatterned cells may represent a major step toward 
quantitative, high-content, and fast analysis for automated 
detection of cell morphology changes in high-throughput 
screens. This framework has the potential to become a gold 
standard for cell phenotyping in high-troughput screening.
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